| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <stddef.h> |
| |
| #include <fxdiv.h> |
| |
| #include <xnnpack/indirection.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_indirection_init_conv2d( |
| xnn_operator_t op, |
| size_t output_tile_size, |
| uint32_t log2_element_size) |
| { |
| const void** indirection_buffer = op->indirection_buffer; |
| const void* input = op->input; |
| const void* zero = op->zero_buffer; |
| const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size; |
| const size_t input_height = op->input_height; |
| const size_t input_width = op->input_width; |
| const size_t output_height = op->output_height; |
| const size_t output_width = op->output_width; |
| const size_t kernel_height = op->kernel_height; |
| const size_t kernel_width = op->kernel_width; |
| const size_t stride_height = op->stride_height; |
| const size_t stride_width = op->stride_width; |
| const size_t dilation_height = op->dilation_height; |
| const size_t dilation_width = op->dilation_width; |
| const size_t input_padding_top = op->padding_top; |
| const size_t input_padding_left = op->padding_left; |
| |
| const size_t output_size = output_height * output_width; |
| const size_t tiled_output_size = round_up(output_size, output_tile_size); |
| const size_t kernel_size = kernel_height * kernel_width; |
| |
| const struct fxdiv_divisor_size_t output_width_divisor = fxdiv_init_size_t(output_width); |
| |
| for (size_t output_tile_start = 0; output_tile_start < tiled_output_size; output_tile_start += output_tile_size) { |
| for (size_t output_tile_offset = 0; output_tile_offset < output_tile_size; output_tile_offset++) { |
| const size_t output_index = min(output_tile_start + output_tile_offset, output_size - 1); |
| const struct fxdiv_result_size_t output_y_x = fxdiv_divide_size_t(output_index, output_width_divisor); |
| const size_t output_x = output_y_x.remainder; |
| const size_t output_y = output_y_x.quotient; |
| for (size_t kernel_y = 0; kernel_y < kernel_height; kernel_y++) { |
| const size_t input_y = output_y * stride_height + kernel_y * dilation_height - input_padding_top; |
| if (input_y < input_height) { |
| for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) { |
| const size_t input_x = output_x * stride_width + kernel_x * dilation_width - input_padding_left; |
| const size_t kernel_index = kernel_y * kernel_width + kernel_x; |
| const size_t index = output_tile_start * kernel_size + kernel_index * output_tile_size + output_tile_offset; |
| if (input_x < input_width) { |
| indirection_buffer[index] = (const void*) |
| ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride); |
| } else { |
| indirection_buffer[index] = zero; |
| } |
| } |
| } else { |
| for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) { |
| const size_t kernel_index = kernel_y * kernel_width + kernel_x; |
| const size_t index = output_tile_start * kernel_size + kernel_index * output_tile_size + output_tile_offset; |
| indirection_buffer[index] = zero; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void xnn_indirection_init_dwconv2d( |
| xnn_operator_t op, |
| size_t batch_start, |
| size_t step_height, |
| size_t step_width, |
| uint32_t log2_element_size) |
| { |
| const void** indirection_buffer = op->indirection_buffer; |
| const void* input = op->input; |
| const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size; |
| const void* zero = op->zero_buffer; |
| const size_t batch_size = op->batch_size; |
| const size_t input_height = op->input_height; |
| const size_t input_width = op->input_width; |
| const size_t output_height = op->output_height; |
| const size_t output_width = op->output_width; |
| const size_t kernel_height = op->kernel_height; |
| const size_t kernel_width = op->kernel_width; |
| const size_t stride_height = op->stride_height; |
| const size_t stride_width = op->stride_width; |
| const size_t dilation_height = op->dilation_height; |
| const size_t dilation_width = op->dilation_width; |
| const size_t input_padding_top = op->padding_top; |
| const size_t input_padding_left = op->padding_left; |
| |
| for (size_t batch_index = batch_start; batch_index < batch_size; batch_index++) { |
| for (size_t output_y = 0; output_y < output_height; output_y++) { |
| for (size_t kernel_y = 0; kernel_y < kernel_height; kernel_y++) { |
| const size_t input_y = output_y * stride_height + kernel_y * dilation_height - input_padding_top; |
| if (input_y < input_height) { |
| for (size_t output_x = 0; output_x < output_width; output_x++) { |
| for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) { |
| const size_t input_x = output_x * stride_width + kernel_x * dilation_width - input_padding_left; |
| const size_t index = (batch_index * output_height + output_y) * step_height + output_x * step_width * kernel_height + kernel_x * kernel_height + kernel_y; |
| if (input_x < input_width) { |
| indirection_buffer[index] = |
| (const void*) ((uintptr_t) input + ((batch_index * input_height + input_y) * input_width + input_x) * input_pixel_stride); |
| } else { |
| indirection_buffer[index] = zero; |
| } |
| } |
| } |
| } else { |
| for (size_t output_x = 0; output_x < output_width; output_x++) { |
| for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) { |
| const size_t index = (batch_index * output_height + output_y) * step_height + output_x * step_width * kernel_height + kernel_x * kernel_height + kernel_y; |
| indirection_buffer[index] = zero; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void xnn_indirection_init_deconv2d( |
| xnn_operator_t op, |
| size_t output_tile_size, |
| uint32_t log2_element_size) |
| { |
| const void** indirection_buffer = op->indirection_buffer; |
| const void* input = op->input; |
| const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size; |
| const void* zero = op->zero_buffer; |
| const size_t input_height = op->input_height; |
| const size_t input_width = op->input_width; |
| const size_t output_height = op->output_height; |
| const size_t output_width = op->output_width; |
| const size_t kernel_height = op->kernel_height; |
| const size_t kernel_width = op->kernel_width; |
| const size_t stride_height = op->stride_height; |
| const size_t stride_width = op->stride_width; |
| const size_t dilation_height = op->dilation_height; |
| const size_t dilation_width = op->dilation_width; |
| const size_t padding_top = op->padding_top; |
| const size_t padding_left = op->padding_left; |
| |
| const size_t output_size = output_height * output_width; |
| const size_t tiled_output_size = round_up(output_size, output_tile_size); |
| const size_t kernel_size = kernel_height * kernel_width; |
| |
| const struct fxdiv_divisor_size_t output_width_divisor = fxdiv_init_size_t(output_width); |
| const struct fxdiv_divisor_size_t stride_height_divisor = fxdiv_init_size_t(stride_height); |
| const struct fxdiv_divisor_size_t stride_width_divisor = fxdiv_init_size_t(stride_width); |
| |
| for (size_t output_tile_start = 0; output_tile_start < tiled_output_size; output_tile_start += output_tile_size) { |
| for (size_t output_tile_offset = 0; output_tile_offset < output_tile_size; output_tile_offset++) { |
| const size_t output_index = min(output_tile_start + output_tile_offset, output_size - 1); |
| const struct fxdiv_result_size_t output_y_x = fxdiv_divide_size_t(output_index, output_width_divisor); |
| const size_t output_x = output_y_x.remainder; |
| const size_t output_y = output_y_x.quotient; |
| for (size_t kernel_y = 0; kernel_y < kernel_height; kernel_y++) { |
| const size_t y = output_y + padding_top - kernel_y * dilation_height; |
| const size_t input_y = fxdiv_quotient_size_t(y, stride_height_divisor); |
| for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) { |
| const size_t x = output_x + padding_left - kernel_x * dilation_width; |
| const size_t input_x = fxdiv_quotient_size_t(x, stride_width_divisor); |
| const size_t kernel_index = kernel_y * kernel_width + kernel_x; |
| const size_t index = output_tile_start * kernel_size + kernel_index * output_tile_size + output_tile_offset; |
| if (input_y * stride_height == y && input_y < input_height && input_x * stride_width == x && input_x < input_width) { |
| indirection_buffer[index] = (const void*) ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride); |
| } else { |
| indirection_buffer[index] = zero; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void xnn_indirection_init_subconv2d( |
| xnn_operator_t op, |
| size_t output_tile_size, |
| uint32_t log2_element_size) |
| { |
| const void** indirection_buffer = op->indirection_buffer; |
| struct subconvolution_params* subconvolution_params = op->subconvolution_buffer; |
| const void* input = op->input; |
| const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size; |
| const void* zero = op->zero_buffer; |
| const size_t input_height = op->input_height; |
| const size_t input_width = op->input_width; |
| const size_t output_height = op->output_height; |
| const size_t output_width = op->output_width; |
| const size_t kernel_height = op->kernel_height; |
| const size_t kernel_width = op->kernel_width; |
| const size_t stride_height = op->stride_height; |
| const size_t stride_width = op->stride_width; |
| const size_t padding_top = op->padding_top; |
| const size_t padding_left = op->padding_left; |
| |
| const size_t modulo_padding_top = padding_top % stride_height; |
| const size_t modulo_padding_left = padding_left % stride_width; |
| for (size_t offset_y = 0; offset_y < stride_height; offset_y++) { |
| const size_t output_y_start = subtract_modulo(offset_y, modulo_padding_top, stride_height); |
| for (size_t offset_x = 0; offset_x < stride_width; offset_x++) { |
| const size_t output_x_start = subtract_modulo(offset_x, modulo_padding_left, stride_width); |
| const size_t sliced_output_width = divide_round_up(output_width - output_x_start, stride_width); |
| |
| subconvolution_params->indirection_buffer = indirection_buffer; |
| subconvolution_params->indirection_y_stride = |
| subconvolution_params->indirection_x_stride * round_up(sliced_output_width, output_tile_size); |
| ++subconvolution_params; |
| |
| for (size_t output_y = output_y_start; output_y < output_height; output_y += stride_height) { |
| for (size_t output_tile_start = 0; output_tile_start < sliced_output_width; output_tile_start += output_tile_size) { |
| for (size_t kernel_y = offset_y; kernel_y < kernel_height; kernel_y += stride_height) { |
| assert(doz(output_y + padding_top, kernel_y) % stride_height == 0); |
| const size_t y = output_y + padding_top - kernel_y; |
| const size_t input_y = y / stride_height; |
| |
| for (size_t kernel_x = offset_x; kernel_x < kernel_width; kernel_x += stride_width) { |
| for (size_t output_tile_offset = 0; output_tile_offset < output_tile_size; output_tile_offset++) { |
| const size_t sliced_output_x = min(output_tile_start + output_tile_offset, sliced_output_width - 1); |
| const size_t output_x = output_x_start + sliced_output_x * stride_width; |
| |
| assert(doz(output_x + padding_left, kernel_x) % stride_width == 0); |
| const size_t x = output_x + padding_left - kernel_x; |
| const size_t input_x = x / stride_width; |
| |
| if (input_y < input_height && input_x < input_width) { |
| *indirection_buffer++ = |
| (const void*) ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride); |
| } else { |
| *indirection_buffer++ = zero; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void xnn_indirection_init_maxpool2d( |
| xnn_operator_t op, |
| size_t step_height, |
| size_t step_width, |
| uint32_t log2_element_size) |
| { |
| const void** indirection_buffer = op->indirection_buffer; |
| const void* input = op->input; |
| const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size; |
| const size_t input_height = op->input_height; |
| const size_t input_width = op->input_width; |
| const size_t output_height = op->output_height; |
| const size_t output_width = op->output_width; |
| const size_t pooling_height = op->kernel_height; |
| const size_t pooling_width = op->kernel_width; |
| const size_t stride_height = op->stride_height; |
| const size_t stride_width = op->stride_width; |
| const size_t dilation_height = op->dilation_height; |
| const size_t dilation_width = op->dilation_width; |
| const size_t input_padding_top = op->padding_top; |
| const size_t input_padding_left = op->padding_left; |
| |
| const bool any_dilation = (dilation_height | dilation_width) > 1; |
| |
| if (any_dilation) { |
| // Clamp to the border doesn't work for pooling with dilation. |
| const size_t adjusted_padding_top = input_padding_top % dilation_height; |
| const size_t adjusted_padding_left = input_padding_left % dilation_width; |
| for (size_t output_y = 0; output_y < output_height; output_y++) { |
| for (size_t pooling_y = 0; pooling_y < pooling_height; pooling_y++) { |
| size_t safe_input_y = output_y * stride_height; |
| if XNN_UNPREDICTABLE(safe_input_y < adjusted_padding_top) { |
| safe_input_y += dilation_height; |
| } |
| safe_input_y -= adjusted_padding_top; |
| |
| size_t input_y = output_y * stride_height + pooling_y * dilation_height - input_padding_top; |
| if XNN_UNPREDICTABLE(input_y >= input_height) { |
| input_y = safe_input_y; |
| } |
| |
| for (size_t output_x = 0; output_x < output_width; output_x++) { |
| for (size_t pooling_x = 0; pooling_x < pooling_width; pooling_x++) { |
| size_t safe_input_x = output_x * stride_width; |
| if XNN_UNPREDICTABLE(safe_input_x < adjusted_padding_left) { |
| safe_input_x += dilation_width; |
| } |
| safe_input_x -= adjusted_padding_left; |
| |
| size_t input_x = output_x * stride_width + pooling_x * dilation_width - input_padding_left; |
| if XNN_UNPREDICTABLE(input_x >= input_width) { |
| input_x = safe_input_x; |
| } |
| |
| const size_t index = output_y * step_height + output_x * step_width * pooling_height + pooling_x * pooling_height + pooling_y; |
| indirection_buffer[index] = (const void*) ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride); |
| } |
| } |
| } |
| } |
| } else { |
| const size_t input_x_max = input_width - 1; |
| const size_t input_y_max = input_height - 1; |
| for (size_t output_y = 0; output_y < output_height; output_y++) { |
| for (size_t pooling_y = 0; pooling_y < pooling_height; pooling_y++) { |
| const size_t input_y = min(doz(output_y * stride_height + pooling_y * dilation_height, input_padding_top), input_y_max); |
| for (size_t output_x = 0; output_x < output_width; output_x++) { |
| for (size_t pooling_x = 0; pooling_x < pooling_width; pooling_x++) { |
| const size_t input_x = min(doz(output_x * stride_width + pooling_x * dilation_width, input_padding_left), input_x_max); |
| const size_t index = output_y * step_height + output_x * step_width * pooling_height + pooling_x * pooling_height + pooling_y; |
| indirection_buffer[index] = (const void*) ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void xnn_indirection_init_resize_bilinear2d_f32( |
| size_t input_pixel_stride, |
| size_t input_height, |
| size_t input_width, |
| size_t output_height, |
| size_t output_width, |
| const void* input, |
| const void** indirection_buffer, |
| float* packed_weights, |
| bool align_corners, |
| bool tensorflow_legacy) |
| { |
| assert(input_height != 0); |
| assert(input_height < 16777216 /* 2**24 */); |
| assert(input_width != 0); |
| assert(input_width < 16777216 /* 2**24 */); |
| assert(output_height != 0); |
| assert(output_height < 16777216 /* 2**24 */); |
| assert(output_width != 0); |
| assert(output_width < 16777216 /* 2**24 */); |
| |
| const int32_t width_adjustment = (int32_t) (align_corners && output_width != 1); |
| const int32_t height_adjustment = (int32_t) (align_corners && output_height != 1); |
| const float width_scale = |
| (float) ((int32_t) input_width - width_adjustment) / (float) ((int32_t) output_width - width_adjustment); |
| const float height_scale = |
| (float) ((int32_t) input_height - height_adjustment) / (float) ((int32_t) output_height - height_adjustment); |
| |
| const uint32_t input_y_max = (uint32_t) input_height - 1; |
| const uint32_t input_x_max = (uint32_t) input_width - 1; |
| if (tensorflow_legacy || align_corners) { |
| for (size_t output_y = 0; output_y < output_height; output_y++) { |
| const float input_y = (float) (int32_t) output_y * height_scale; |
| assert(input_y >= 0.0f); |
| assert(input_y < (float) input_height); |
| |
| const uint32_t input_y_top = (uint32_t) (int32_t) input_y; |
| const uint32_t input_y_bottom = math_min_u32(input_y_top + 1, input_y_max); |
| const float alpha_y = input_y - (float) input_y_top; |
| for (size_t output_x = 0; output_x < output_width; output_x++) { |
| const float input_x = (float) (int32_t) output_x * width_scale; |
| assert(input_x >= 0.0f); |
| assert(input_x < (float) input_width); |
| |
| const uint32_t input_x_left = (uint32_t) (int32_t) input_x; |
| const uint32_t input_x_right = math_min_u32(input_x_left + 1, input_x_max); |
| const float alpha_x = input_x - (float) input_x_left; |
| indirection_buffer[0] = |
| (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_left) * input_pixel_stride); |
| indirection_buffer[1] = |
| (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_right) * input_pixel_stride); |
| indirection_buffer[2] = |
| (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_left) * input_pixel_stride); |
| indirection_buffer[3] = |
| (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_right) * input_pixel_stride); |
| packed_weights[0] = alpha_x; |
| packed_weights[1] = alpha_y; |
| indirection_buffer += 4; |
| packed_weights += 2; |
| } |
| } |
| } else { |
| const float height_offset = 0.5f * height_scale - 0.5f; |
| const float width_offset = 0.5f * width_scale - 0.5f; |
| for (size_t output_y = 0; output_y < output_height; output_y++) { |
| float input_y = (float) (int32_t) output_y * height_scale + height_offset; |
| input_y = math_min_f32(math_max_f32(input_y, 0.0f), (float) input_y_max); |
| const uint32_t input_y_top = (uint32_t) (int32_t) input_y; |
| assert((int32_t) input_y_top >= 0); |
| const uint32_t input_y_bottom = math_min_u32(input_y_top + 1, input_y_max); |
| const float alpha_y = input_y - (float) input_y_top; |
| for (size_t output_x = 0; output_x < output_width; output_x++) { |
| float input_x = (float) (int32_t) output_x * width_scale + width_offset; |
| input_x = math_min_f32(math_max_f32(input_x, 0.0f), (float) input_x_max); |
| const uint32_t input_x_left = (uint32_t) (int32_t) input_x; |
| assert((int32_t) input_x_left >= 0); |
| const uint32_t input_x_right = math_min_u32(input_x_left + 1, input_x_max); |
| const float alpha_x = input_x - (float) input_x_left; |
| indirection_buffer[0] = |
| (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_left) * input_pixel_stride); |
| indirection_buffer[1] = |
| (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_right) * input_pixel_stride); |
| indirection_buffer[2] = |
| (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_left) * input_pixel_stride); |
| indirection_buffer[3] = |
| (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_right) * input_pixel_stride); |
| packed_weights[0] = alpha_x; |
| packed_weights[1] = alpha_y; |
| indirection_buffer += 4; |
| packed_weights += 2; |
| } |
| } |
| } |
| } |
| |
| void xnn_indirection_init_unpool2d( |
| xnn_operator_t op, |
| size_t batch_start, |
| uint32_t log2_element_size) |
| { |
| const void** indirection_buffer = op->indirection_buffer; |
| const void* output = op->output; |
| const size_t output_pixel_stride = op->output_pixel_stride << log2_element_size; |
| const size_t batch_size = op->batch_size; |
| const size_t input_height = op->input_height; |
| const size_t input_width = op->input_width; |
| const size_t output_height = op->output_height; |
| const size_t output_width = op->output_width; |
| const size_t pooling_height = op->kernel_height; |
| const size_t pooling_width = op->kernel_width; |
| const size_t output_padding_top = op->padding_top; |
| const size_t output_padding_left = op->padding_left; |
| |
| for (size_t image = batch_start; image < batch_size; image++) { |
| for (size_t input_y = 0; input_y < input_height; input_y++) { |
| for (size_t pooling_y = 0; pooling_y < pooling_height; pooling_y++) { |
| const size_t output_y = min(doz(input_y * pooling_height + pooling_y, output_padding_top), output_height - 1); |
| for (size_t input_x = 0; input_x < input_width; input_x++) { |
| for (size_t pooling_x = 0; pooling_x < pooling_width; pooling_x++) { |
| const size_t output_x = min(doz(input_x * pooling_width + pooling_x, output_padding_left), output_width - 1); |
| indirection_buffer[(((image * input_height + input_y) * input_width + input_x) * pooling_width + pooling_x) * pooling_height + pooling_y] = |
| (const void*) ((uintptr_t) output + ((image * output_height + output_y) * output_width + output_x) * output_pixel_stride); |
| } |
| } |
| } |
| } |
| } |
| } |