| // Auto-generated file. Do not edit! |
| // Template: src/qs8-gemm/MRx8c8-minmax-avx2.c.in |
| // Generator: tools/xngen |
| // |
| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/gemm.h> |
| |
| |
| void xnn_qs8_gemm_xw_minmax_ukernel_1x8c8__avx2( |
| size_t mr, |
| size_t nc, |
| size_t kc, |
| const int8_t* restrict a, |
| size_t a_stride, |
| const void* restrict w, |
| int8_t* restrict c, |
| size_t cm_stride, |
| size_t cn_stride, |
| const union xnn_qs8_gemm_xw_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN |
| { |
| assert(mr != 0); |
| assert(mr <= 1); |
| assert(nc != 0); |
| assert(kc != 0); |
| assert(kc % sizeof(int8_t) == 0); |
| assert(a != NULL); |
| assert(w != NULL); |
| assert(c != NULL); |
| |
| const int8_t* a0 = a; |
| int8_t* c0 = c; |
| |
| do { |
| const __m128i vbias0x0 = _mm_loadu_si32(w); |
| const __m128i vbias0x1 = _mm_loadu_si32((const void*) ((uintptr_t) w + sizeof(int32_t))); |
| __m256i vacc0x01 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x0), vbias0x1, 1); |
| const __m128i vbias0x2 = _mm_loadu_si32((const void*) ((uintptr_t) w + 2 * sizeof(int32_t))); |
| const __m128i vbias0x3 = _mm_loadu_si32((const void*) ((uintptr_t) w + 3 * sizeof(int32_t))); |
| __m256i vacc0x23 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x2), vbias0x3, 1); |
| const __m128i vbias0x4 = _mm_loadu_si32((const void*) ((uintptr_t) w + 4 * sizeof(int32_t))); |
| const __m128i vbias0x5 = _mm_loadu_si32((const void*) ((uintptr_t) w + 5 * sizeof(int32_t))); |
| __m256i vacc0x45 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x4), vbias0x5, 1); |
| const __m128i vbias0x6 = _mm_loadu_si32((const void*) ((uintptr_t) w + 6 * sizeof(int32_t))); |
| const __m128i vbias0x7 = _mm_loadu_si32((const void*) ((uintptr_t) w + 7 * sizeof(int32_t))); |
| __m256i vacc0x67 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x6), vbias0x7, 1); |
| w = (const void*) ((uintptr_t) w + 8 * sizeof(int32_t)); |
| |
| size_t k = 0; |
| while (k < kc) { |
| const __m128i va0 = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a0)); |
| const __m256i vxa0 = _mm256_cvtepi8_epi16(va0); |
| a0 += 8; |
| |
| const __m256i vxb01 = _mm256_load_si256((const __m256i*) w); |
| |
| vacc0x01 = _mm256_add_epi32(vacc0x01, _mm256_madd_epi16(vxa0, vxb01)); |
| const __m256i vxb23 = _mm256_load_si256((const __m256i*) ((uintptr_t) w + 16 * sizeof(int16_t))); |
| |
| vacc0x23 = _mm256_add_epi32(vacc0x23, _mm256_madd_epi16(vxa0, vxb23)); |
| const __m256i vxb45 = _mm256_load_si256((const __m256i*) ((uintptr_t) w + 32 * sizeof(int16_t))); |
| |
| vacc0x45 = _mm256_add_epi32(vacc0x45, _mm256_madd_epi16(vxa0, vxb45)); |
| const __m256i vxb67 = _mm256_load_si256((const __m256i*) ((uintptr_t) w + 48 * sizeof(int16_t))); |
| |
| vacc0x67 = _mm256_add_epi32(vacc0x67, _mm256_madd_epi16(vxa0, vxb67)); |
| |
| w = (const void*) ((uintptr_t) w + 64 * sizeof(int16_t)); |
| k += 8 * sizeof(int8_t); |
| } |
| |
| const __m256i vacc0x0213 = _mm256_hadd_epi32(vacc0x01, vacc0x23); |
| const __m256i vacc0x4657 = _mm256_hadd_epi32(vacc0x45, vacc0x67); |
| |
| const __m256i vacc0x02461357 = _mm256_hadd_epi32(vacc0x0213, vacc0x4657); |
| |
| const __m256i vpermuate_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0); |
| __m256i vacc0x01234567 = _mm256_permutevar8x32_epi32(vacc0x02461357, vpermuate_mask); |
| |
| const __m256i vmultiplier = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.multiplier)); |
| const __m256i vrounding = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.rounding)); |
| |
| const __m256i vacc0x23016745 = _mm256_shuffle_epi32(vacc0x01234567, _MM_SHUFFLE(2, 3, 0, 1)); |
| |
| const __m256i vprod0x0246 = _mm256_add_epi64(_mm256_mul_epi32(vacc0x01234567, vmultiplier), vrounding); |
| |
| const __m256i vprod0x1357 = _mm256_add_epi64(_mm256_mul_epi32(vacc0x23016745, vmultiplier), vrounding); |
| |
| const __m256i vq31prod0x0246 = _mm256_srli_epi64(vprod0x0246, 31); |
| const __m256i vq31prod0x1357 = _mm256_add_epi64(vprod0x1357, vprod0x1357); |
| |
| const __m256i vq31prod0x01234567 = _mm256_blend_epi16(vq31prod0x0246, vq31prod0x1357, 0xCC); |
| |
| const __m256i vremainder_mask = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_mask)); |
| const __m256i vrem0x01234567 = |
| _mm256_add_epi32(_mm256_and_si256(vq31prod0x01234567, vremainder_mask), _mm256_cmpgt_epi32(_mm256_setzero_si256(), vq31prod0x01234567)); |
| |
| const __m256i vremainder_threshold = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_threshold)); |
| const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); |
| vacc0x01234567 = |
| _mm256_sub_epi32(_mm256_sra_epi32(vq31prod0x01234567, vshift), _mm256_cmpgt_epi32(vrem0x01234567, vremainder_threshold)); |
| |
| const __m256i voutput_zero_point = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_zero_point)); |
| __m256i vacc00x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc0x01234567, vacc0x01234567), voutput_zero_point); |
| |
| vacc00x01234567 = _mm256_permute4x64_epi64(vacc00x01234567, _MM_SHUFFLE(3, 1, 2, 0)); |
| |
| const __m256i voutput_min = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_min)); |
| const __m256i voutput_max = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_max)); |
| vacc00x01234567 = _mm256_min_epi16(_mm256_max_epi16(vacc00x01234567, voutput_min), voutput_max); |
| |
| __m256i vout = _mm256_packs_epi16(vacc00x01234567, vacc00x01234567); |
| __m128i vout_lo = _mm256_castsi256_si128(vout); |
| __m128i vout_hi = _mm256_extracti128_si256(vout, 1); |
| |
| if (nc >= 8) { |
| _mm_storel_epi64((__m128i*) c0, vout_lo); |
| |
| a0 = (const int8_t*) ((uintptr_t) a0 - k); |
| |
| c0 = (int8_t*) ((uintptr_t) c0 + cn_stride); |
| |
| nc -= 8; |
| } else { |
| if (nc & 4) { |
| _mm_storeu_si32(c0, vout_lo); |
| |
| c0 += 4; |
| |
| vout_lo = _mm_srli_epi64(vout_lo, 32); |
| vout_hi = _mm_srli_epi64(vout_hi, 32); |
| } |
| if (nc & 2) { |
| *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout_lo, 0); |
| |
| c0 += 2; |
| |
| vout_lo = _mm_srli_epi32(vout_lo, 16); |
| vout_hi = _mm_srli_epi32(vout_hi, 16); |
| } |
| if (nc & 1) { |
| *c0 = (int8_t) _mm_extract_epi8(vout_lo, 0); |
| } |
| |
| nc = 0; |
| } |
| } while (nc != 0); |
| } |