blob: c4d6d2dcd27d9892e8d07d8615f6291e53a9a39c [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/compute.h>
#include <xnnpack/indirection.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/operator.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
static inline size_t compute_output_dimension(
size_t padded_input_dimension,
size_t kernel_dimension,
size_t dilation_dimension,
size_t subsampling_dimension)
{
const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1;
return doz(padded_input_dimension, effective_kernel_dimension) / subsampling_dimension + 1;
}
static inline size_t compute_output_dimension_with_tf_same_padding(
size_t input_dimension,
size_t subsampling_dimension)
{
return divide_round_up(input_dimension, subsampling_dimension);
}
static const struct dwconv_parameters* find_dwigemm_ukernel(
size_t kernel_size,
const struct dwconv_parameters* ukernel,
size_t num_ukernels)
{
while (num_ukernels-- != 0) {
if (ukernel->mr == kernel_size) {
return ukernel;
}
ukernel++;
}
return NULL;
}
enum xnn_status xnn_create_convolution2d_nhwc_q8(
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t subsampling_height,
uint32_t subsampling_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
uint8_t input_zero_point,
float input_scale,
uint8_t kernel_zero_point,
float kernel_scale,
const uint8_t* kernel,
const int32_t* bias,
uint8_t output_zero_point,
float output_scale,
uint8_t output_min,
uint8_t output_max,
uint32_t flags,
xnn_operator_t* convolution_op_out)
{
xnn_operator_t convolution_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
goto error;
}
if (subsampling_width == 0 || subsampling_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
"subsampling dimensions must be non-zero",
subsampling_width, subsampling_height);
goto error;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
goto error;
}
if (groups == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
goto error;
}
if (group_input_channels == 0) {
xnn_log_error(
"failed to create Convolution operator with %zu input channels per group: "
"number of channels must be non-zero",
group_input_channels);
goto error;
}
if (group_output_channels == 0) {
xnn_log_error(
"failed to create Convolution operator with %zu output channels per group: "
"number of channels must be non-zero",
group_output_channels);
goto error;
}
const size_t input_channels = groups * group_input_channels;
if (input_pixel_stride < input_channels) {
xnn_log_error(
"failed to create Convolution operator with input pixel stride of %zu: "
"stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)",
input_pixel_stride, groups, group_input_channels);
goto error;
}
const size_t output_channels = groups * group_output_channels;
if (output_pixel_stride < output_channels) {
xnn_log_error(
"failed to create Convolution operator with output pixel stride of %zu: "
"stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
output_pixel_stride, groups, group_output_channels);
goto error;
}
if (input_scale <= 0.0f || !isnormal(input_scale)) {
xnn_log_error(
"failed to create Convolution operator with %.7g input scale: scale must be finite, normalized, and positive",
input_scale);
goto error;
}
if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
xnn_log_error(
"failed to create Convolution operator with %.7g kernel scale: scale must be finite, normalized, and positive",
kernel_scale);
goto error;
}
if (output_scale <= 0.0f || !isnormal(output_scale)) {
xnn_log_error(
"failed to create Convolution operator with %.7g output scale: scale must be finite, normalized, and positive",
output_scale);
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Convolution operator with [%" PRIu8 ", %" PRIu8 "] output range: "
"range min must be below range max",
output_min, output_max);
goto error;
}
if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
xnn_log_error(
"failed to create Depthwise Convolution operator with %zu input channels per group: "
"Depthwise Convolution must have exactly 1 input channel per group",
group_input_channels);
goto error;
}
const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
if (any_padding) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
"TensorFlow SAME padding can't be combined with explicit padding specification",
input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
goto error;
}
}
status = xnn_status_unsupported_parameter;
const float convolution_scale = input_scale * kernel_scale / output_scale;
if (convolution_scale >= 1.0f) {
xnn_log_error(
"failed to create Convolution operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
"convolution scale %.7g is greater or equal to 1.0",
input_scale, kernel_scale, output_scale, convolution_scale);
goto error;
}
status = xnn_status_out_of_memory;
convolution_op = xnn_allocate_zero_memory(sizeof(struct xnn_operator));
if (convolution_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator));
goto error;
}
const size_t kernel_size = kernel_height * kernel_width;
enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_none;
const struct dwconv_parameters* dwconv_parameters = NULL;
if (group_input_channels == 1 && group_output_channels == 1 && groups > 1 &&
(dwconv_parameters = find_dwigemm_ukernel(kernel_size, xnn_params.q8.dwconv, XNN_MAX_Q8_DWCONV_UKERNELS)) != NULL)
{
ukernel_type = xnn_ukernel_type_dwconv;
} else if (kernel_size == 1 && subsampling_height == 1 && subsampling_width == 1 && !any_padding) {
ukernel_type = xnn_ukernel_type_gemm;
} else {
ukernel_type = xnn_ukernel_type_igemm;
}
size_t zero_size = 0;
switch (ukernel_type) {
case xnn_ukernel_type_dwconv:
{
assert(dwconv_parameters != NULL);
assert(dwconv_parameters->mr == kernel_size);
const uint32_t c_stride = round_up_po2(groups, dwconv_parameters->cr);
const size_t packed_weights_size = (sizeof(uint8_t) * kernel_size + sizeof(int32_t)) * c_stride;
convolution_op->packed_weights = xnn_allocate_memory(packed_weights_size);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
goto error;
}
if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
xnn_pack_q8_dwconv_hwg_w(
kernel_height, kernel_width,
groups, dwconv_parameters->cr,
input_zero_point, kernel_zero_point,
kernel, bias, convolution_op->packed_weights);
} else {
xnn_pack_q8_dwconv_ghw_w(
kernel_height, kernel_width,
groups, dwconv_parameters->cr,
input_zero_point, kernel_zero_point,
kernel, bias, convolution_op->packed_weights);
}
convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) {
.unipass_function = dwconv_parameters->up,
.mr = dwconv_parameters->mr,
.qr = dwconv_parameters->qr,
};
zero_size = sizeof(uint8_t) * c_stride + XNN_EXTRA_BYTES;
break;
}
case xnn_ukernel_type_gemm:
case xnn_ukernel_type_igemm:
{
const uint32_t nr = xnn_params.q8.gemm.nr;
const uint32_t kr = UINT32_C(1) << xnn_params.q8.gemm.log2_kr;
const uint32_t n_stride = round_up(group_output_channels, nr);
const uint32_t k_stride = round_up_po2(group_input_channels, kr);
const size_t packed_group_weights_size =
(sizeof(uint8_t) * kernel_size * k_stride + sizeof(int32_t)) * n_stride;
convolution_op->packed_weights = xnn_allocate_memory(packed_group_weights_size * groups);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups);
goto error;
}
memset(convolution_op->packed_weights, kernel_zero_point, packed_group_weights_size * groups);
switch (ukernel_type) {
case xnn_ukernel_type_gemm:
xnn_pack_q8_gemm_goi_w(
groups, group_output_channels, group_input_channels,
nr, kr,
input_zero_point, kernel_zero_point,
kernel, bias, convolution_op->packed_weights);
convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) {
.mr = xnn_params.q8.gemm.mr,
.nr = nr,
.kr = kr,
.default_function = xnn_params.q8.gemm.gemm,
};
break;
case xnn_ukernel_type_igemm:
if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
xnn_pack_q8_conv_kgo_w(
groups, group_output_channels, kernel_size,
nr, kr,
input_zero_point, kernel_zero_point,
kernel, bias, convolution_op->packed_weights);
} else {
xnn_pack_q8_conv_goki_w(
groups, group_output_channels, kernel_size, group_input_channels,
nr, kr,
input_zero_point, kernel_zero_point,
kernel, bias, convolution_op->packed_weights);
}
convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
.mr = xnn_params.q8.gemm.mr,
.nr = nr,
.kr = kr,
.default_function = xnn_params.q8.gemm.igemm,
};
break;
default:
XNN_UNREACHABLE;
}
zero_size = sizeof(uint8_t) * k_stride + XNN_EXTRA_BYTES;
break;
}
default:
XNN_UNREACHABLE;
}
const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1;
if (any_padding || tf_same_padding) {
void* zero_buffer = xnn_allocate_memory(zero_size);
if (zero_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size);
goto error;
}
memset(zero_buffer, input_zero_point, zero_size);
convolution_op->zero_buffer = zero_buffer;
}
convolution_op->padding_top = input_padding_top;
convolution_op->padding_right = input_padding_right;
convolution_op->padding_bottom = input_padding_bottom;
convolution_op->padding_left = input_padding_left;
convolution_op->kernel_height = kernel_height;
convolution_op->kernel_width = kernel_width;
convolution_op->stride_height = subsampling_height;
convolution_op->stride_width = subsampling_width;
convolution_op->dilation_height = dilation_height;
convolution_op->dilation_width = dilation_width;
convolution_op->groups = groups;
convolution_op->group_input_channels = group_input_channels;
convolution_op->group_output_channels = group_output_channels;
convolution_op->input_pixel_stride = input_pixel_stride;
convolution_op->output_pixel_stride = output_pixel_stride;
convolution_op->kernel_zero_point = kernel_zero_point;
convolution_op->q8_gemm_params =
xnn_init_q8_gemm_params(
input_zero_point, kernel_zero_point,
convolution_scale, output_zero_point, output_min, output_max);
convolution_op->type = xnn_operator_type_convolution_q8;
convolution_op->ukernel.type = ukernel_type;
if (tf_same_padding) {
convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING;
}
convolution_op->state = xnn_run_state_invalid;
*convolution_op_out = convolution_op;
return xnn_status_success;
error:
xnn_delete_operator(convolution_op);
return status;
}
enum xnn_status xnn_create_convolution2d_nhwc_f32(
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t subsampling_height,
uint32_t subsampling_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
const float* kernel,
const float* bias,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* convolution_op_out)
{
xnn_operator_t convolution_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
goto error;
}
if (subsampling_width == 0 || subsampling_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
"subsampling dimensions must be non-zero",
subsampling_width, subsampling_height);
goto error;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
goto error;
}
if (groups == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
goto error;
}
if (group_input_channels == 0) {
xnn_log_error(
"failed to create Convolution operator with %zu input channels per group: "
"number of channels must be non-zero",
group_input_channels);
goto error;
}
if (group_output_channels == 0) {
xnn_log_error(
"failed to create Convolution operator with %zu output channels per group: "
"number of channels must be non-zero",
group_output_channels);
goto error;
}
const size_t input_channels = groups * group_input_channels;
if (input_pixel_stride < input_channels) {
xnn_log_error(
"failed to create Convolution operator with input pixel stride of %zu: "
"stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)",
input_pixel_stride, groups, group_input_channels);
goto error;
}
const size_t output_channels = groups * group_output_channels;
if (output_pixel_stride < output_channels) {
xnn_log_error(
"failed to create Convolution operator with output pixel stride of %zu: "
"stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
output_pixel_stride, groups, group_output_channels);
goto error;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to create Convolution operator with NaN output lower bound: lower bound must be non-NaN");
goto error;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to create Convolution operator with NaN output upper bound: upper bound must be non-NaN");
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Convolution operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
goto error;
}
if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
xnn_log_error(
"failed to create Depthwise Convolution operator with %zu input channels per group: "
"Depthwise Convolution must have exactly 1 input channel per group",
group_input_channels);
goto error;
}
const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
if (any_padding) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
"TensorFlow SAME padding can't be combined with explicit padding specification",
input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
goto error;
}
}
status = xnn_status_out_of_memory;
convolution_op = xnn_allocate_zero_memory(sizeof(struct xnn_operator));
if (convolution_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator));
goto error;
}
const size_t kernel_size = kernel_height * kernel_width;
enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_none;
const struct dwconv_parameters* dwconv_parameters = NULL;
const bool unit_subsampling = (subsampling_width | subsampling_height) == 1;
if (group_input_channels == 1 && group_output_channels == 1 && kernel_size == 1 && unit_subsampling && !any_padding) {
ukernel_type = xnn_ukernel_type_vmulcaddc;
} else if (group_input_channels == 1 && group_output_channels == 1 && (dwconv_parameters =
find_dwigemm_ukernel(kernel_size, xnn_params.f32.dwconv, XNN_MAX_F32_DWCONV_UKERNELS)) != NULL)
{
ukernel_type = xnn_ukernel_type_dwconv;
} else if (kernel_size == 1 && unit_subsampling && !any_padding) {
ukernel_type = xnn_ukernel_type_gemm;
} else {
ukernel_type = xnn_ukernel_type_igemm;
}
size_t zero_size = 0;
switch (ukernel_type) {
case xnn_ukernel_type_vmulcaddc:
{
const uint32_t c_stride = round_up_po2(groups, xnn_params.f32.vmulcaddc.cr);
const size_t packed_weights_size = 2 * sizeof(float) * c_stride;
convolution_op->packed_weights = xnn_allocate_memory(packed_weights_size);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
goto error;
}
xnn_pack_f32_vmulcaddc_w(
groups, xnn_params.f32.vmulcaddc.cr,
kernel, bias, convolution_op->packed_weights);
convolution_op->ukernel.vmulcaddc = (struct xnn_ukernel_vmulcaddc) {
.function = xnn_params.f32.vmulcaddc.ukernel,
.mr = xnn_params.f32.vmulcaddc.mr,
};
break;
}
case xnn_ukernel_type_dwconv:
{
assert(dwconv_parameters != NULL);
assert(dwconv_parameters->mr == kernel_size);
const uint32_t c_stride = round_up_po2(groups, dwconv_parameters->cr);
const size_t packed_weights_size = (kernel_size + 1) * sizeof(float) * c_stride;
convolution_op->packed_weights = xnn_allocate_memory(packed_weights_size);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
goto error;
}
if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
xnn_pack_f32_dwconv_hwg_w(
kernel_height, kernel_width,
groups, dwconv_parameters->cr,
kernel, bias, convolution_op->packed_weights);
} else {
xnn_pack_f32_dwconv_ghw_w(
kernel_height, kernel_width,
groups, dwconv_parameters->cr,
kernel, bias, convolution_op->packed_weights);
}
convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) {
.unipass_function = dwconv_parameters->up,
.mr = dwconv_parameters->mr,
.qr = dwconv_parameters->qr,
};
zero_size = sizeof(float) * c_stride;
break;
}
case xnn_ukernel_type_gemm:
case xnn_ukernel_type_igemm:
{
const uint32_t nr = xnn_params.f32.gemm.nr;
const uint32_t kr = UINT32_C(1) << xnn_params.f32.gemm.log2_kr;
const uint32_t sr = UINT32_C(1) << xnn_params.f32.gemm.log2_sr;
const uint32_t n_stride = round_up(group_output_channels, nr);
const uint32_t k_stride = round_up_po2(group_input_channels, kr);
const size_t packed_group_weights_size = (kernel_size * k_stride + 1) * sizeof(float) * n_stride;
convolution_op->packed_weights = xnn_allocate_memory(packed_group_weights_size * groups);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups);
goto error;
}
memset(convolution_op->packed_weights, 0, packed_group_weights_size * groups);
switch (ukernel_type) {
case xnn_ukernel_type_gemm:
xnn_pack_f32_gemm_goi_w(
groups, group_output_channels, group_input_channels,
nr, kr, sr,
kernel, bias, convolution_op->packed_weights);
convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) {
.mr = xnn_params.f32.gemm.mr,
.nr = nr,
.kr = kr,
.default_function = xnn_params.f32.gemm.gemm,
.mr1_function = xnn_params.f32.gemm.gemm1,
};
break;
case xnn_ukernel_type_igemm:
if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
xnn_pack_f32_conv_kgo_w(
groups, group_output_channels, kernel_size,
nr, kr,
kernel, bias, convolution_op->packed_weights);
} else {
xnn_pack_f32_conv_goki_w(
groups, group_output_channels, kernel_size, group_input_channels,
nr, kr, sr,
kernel, bias, convolution_op->packed_weights);
}
convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
.mr = xnn_params.f32.gemm.mr,
.nr = nr,
.kr = kr,
.default_function = xnn_params.f32.gemm.igemm,
.mr1_function = xnn_params.f32.gemm.igemm1,
};
break;
default:
XNN_UNREACHABLE;
}
zero_size = sizeof(float) * k_stride;
break;
}
default:
XNN_UNREACHABLE;
}
const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1;
if (any_padding || tf_same_padding) {
void* zero_buffer = xnn_allocate_zero_memory(zero_size);
if (zero_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size);
goto error;
}
convolution_op->zero_buffer = zero_buffer;
}
convolution_op->padding_top = input_padding_top;
convolution_op->padding_right = input_padding_right;
convolution_op->padding_bottom = input_padding_bottom;
convolution_op->padding_left = input_padding_left;
convolution_op->kernel_height = kernel_height;
convolution_op->kernel_width = kernel_width;
convolution_op->stride_height = subsampling_height;
convolution_op->stride_width = subsampling_width;
convolution_op->dilation_height = dilation_height;
convolution_op->dilation_width = dilation_width;
convolution_op->groups = groups;
convolution_op->group_input_channels = group_input_channels;
convolution_op->group_output_channels = group_output_channels;
convolution_op->input_pixel_stride = input_pixel_stride;
convolution_op->output_pixel_stride = output_pixel_stride;
convolution_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
convolution_op->type = xnn_operator_type_convolution_f32;
convolution_op->ukernel.type = ukernel_type;
if (tf_same_padding) {
convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING;
}
convolution_op->state = xnn_run_state_invalid;
*convolution_op_out = convolution_op;
return xnn_status_success;
error:
xnn_delete_operator(convolution_op);
return status;
}
static enum xnn_status setup_convolution2d_nhwc(
xnn_operator_t convolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const void* input,
void* output,
uint32_t log2_input_element_size,
uint32_t log2_filter_element_size,
uint32_t bias_element_size,
uint32_t log2_output_element_size,
const void* params,
size_t num_threads)
{
convolution_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Convolution operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_width == 0 || input_height == 0) {
xnn_log_error(
"failed to setup Convolution operator with %zux%zu input: input dimensions must be non-zero",
input_width, input_height);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
convolution_op->state = xnn_run_state_skip;
return xnn_status_success;
}
convolution_op->batch_size = batch_size;
convolution_op->input_height = input_height;
convolution_op->input_width = input_width;
convolution_op->input = input;
if (convolution_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) {
convolution_op->output_height = compute_output_dimension_with_tf_same_padding(
input_height, convolution_op->stride_height);
convolution_op->output_width = compute_output_dimension_with_tf_same_padding(
input_width, convolution_op->stride_width);
const uint32_t effective_kernel_height = (convolution_op->kernel_height - 1) * convolution_op->dilation_height + 1;
const uint32_t effective_kernel_width = (convolution_op->kernel_width - 1) * convolution_op->dilation_width + 1;
const uint32_t total_padding_height =
(convolution_op->output_height - 1) * convolution_op->stride_height + effective_kernel_height - input_height;
const uint32_t total_padding_width =
(convolution_op->output_width - 1) * convolution_op->stride_width + effective_kernel_width - input_width;
convolution_op->padding_top = total_padding_height / 2;
convolution_op->padding_left = total_padding_width / 2;
convolution_op->padding_bottom = total_padding_height - convolution_op->padding_top;
convolution_op->padding_right = total_padding_width - convolution_op->padding_left;
} else {
convolution_op->output_height = compute_output_dimension(
convolution_op->padding_top + input_height + convolution_op->padding_bottom,
convolution_op->kernel_height,
convolution_op->dilation_height,
convolution_op->stride_height);
convolution_op->output_width = compute_output_dimension(
convolution_op->padding_left + input_width + convolution_op->padding_right,
convolution_op->kernel_width,
convolution_op->dilation_width,
convolution_op->stride_width);
}
convolution_op->output = output;
switch (convolution_op->ukernel.type) {
case xnn_ukernel_type_gemm:
{
// Convolution maps directly to GEMM and doesn't use indirection buffer.
const size_t output_height = convolution_op->output_height;
const size_t output_width = convolution_op->output_width;
const size_t output_size = output_height * output_width;
const size_t batch_output_size = batch_size * output_size;
const size_t groups = convolution_op->groups;
const size_t group_input_channels = convolution_op->group_input_channels;
const size_t w_stride = (round_up_po2(group_input_channels, convolution_op->ukernel.gemm.kr) << log2_filter_element_size) + bias_element_size;
const size_t group_output_channels = convolution_op->group_output_channels;
uint32_t mr = convolution_op->ukernel.gemm.mr;
const uint32_t nr = convolution_op->ukernel.gemm.nr;
xnn_gemm_ukernel_function gemm_ukernel = convolution_op->ukernel.gemm.default_function;
if (batch_output_size == 1 && convolution_op->ukernel.gemm.mr1_function != NULL) {
mr = 1;
gemm_ukernel = convolution_op->ukernel.gemm.mr1_function;
}
convolution_op->context.gemm = (struct gemm_context) {
.k_scaled = group_input_channels << log2_input_element_size,
.a = input,
.a_stride = convolution_op->input_pixel_stride << log2_input_element_size,
.packed_w = convolution_op->packed_weights,
.w_stride = w_stride,
.wg_stride = w_stride * round_up(group_output_channels, nr),
.c = output,
.cm_stride = convolution_op->output_pixel_stride << log2_output_element_size,
.cn_stride = nr << log2_output_element_size,
.cg_stride = group_output_channels << log2_output_element_size,
.log2_csize = log2_output_element_size,
.ukernel = gemm_ukernel,
};
memcpy(&convolution_op->context.gemm.params, params, sizeof(convolution_op->context.gemm.params));
size_t nc = group_output_channels;
if (num_threads > 1) {
const size_t num_other_tiles = groups * divide_round_up(batch_output_size, mr);
const size_t target_tiles_per_thread = 5;
const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
if (max_nc < nc) {
nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
}
}
if (groups == 1) {
convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d;
convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm;
convolution_op->compute.range[0] = batch_output_size;
convolution_op->compute.range[1] = group_output_channels;
convolution_op->compute.tile[0] = mr;
convolution_op->compute.tile[1] = nc;
} else {
convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_ggemm;
convolution_op->compute.range[0] = groups;
convolution_op->compute.range[1] = batch_output_size;
convolution_op->compute.range[2] = group_output_channels;
convolution_op->compute.tile[0] = mr;
convolution_op->compute.tile[1] = nc;
}
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
case xnn_ukernel_type_igemm:
{
const size_t groups = convolution_op->groups;
const size_t kernel_height = convolution_op->kernel_height;
const size_t kernel_width = convolution_op->kernel_width;
const size_t kernel_size = kernel_height * kernel_width;
const size_t output_height = convolution_op->output_height;
const size_t output_width = convolution_op->output_width;
const size_t output_size = output_height * output_width;
uint32_t mr = convolution_op->ukernel.igemm.mr;
const uint32_t nr = convolution_op->ukernel.igemm.nr;
xnn_igemm_ukernel_function igemm_ukernel = convolution_op->ukernel.igemm.default_function;
if (output_size == 1 && convolution_op->ukernel.igemm.mr1_function != NULL) {
mr = 1;
igemm_ukernel = convolution_op->ukernel.igemm.mr1_function;
}
const size_t tiled_output_size = round_up(output_size, mr);
const size_t indirection_buffer_size = sizeof(void*) * kernel_size * tiled_output_size;
if (input_height != convolution_op->last_input_height ||
input_width != convolution_op->last_input_width)
{
const void** indirection_buffer = (const void**) realloc(convolution_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
return xnn_status_out_of_memory;
}
convolution_op->indirection_buffer = indirection_buffer;
convolution_op->last_input = input;
convolution_op->last_input_height = input_height;
convolution_op->last_input_width = input_width;
xnn_indirection_init_conv2d(convolution_op, mr, log2_input_element_size);
}
const size_t group_input_channels = convolution_op->group_input_channels;
const size_t w_stride = (round_up_po2(group_input_channels, convolution_op->ukernel.igemm.kr) * kernel_size << log2_filter_element_size) + bias_element_size;
const size_t group_output_channels = convolution_op->group_output_channels;
convolution_op->context.igemm = (struct igemm_context) {
.ks = kernel_size,
.ks_scaled = kernel_size * mr * sizeof(void*),
.kc = group_input_channels << log2_input_element_size,
.w_stride = w_stride,
.indirect_a = convolution_op->indirection_buffer,
.a_offset = (size_t) ((uintptr_t) input - (uintptr_t) convolution_op->last_input),
.zero = convolution_op->zero_buffer,
.packed_w = convolution_op->packed_weights,
.c = convolution_op->output,
.cm_stride = convolution_op->output_pixel_stride << log2_output_element_size,
.cn_stride = nr << log2_output_element_size,
.ga_stride = group_input_channels << log2_input_element_size,
.gw_stride = w_stride * round_up(group_output_channels, nr),
.gc_stride = group_output_channels << log2_output_element_size,
.ba_stride = input_height * input_width * convolution_op->input_pixel_stride << log2_input_element_size,
.bc_stride = output_size * convolution_op->output_pixel_stride << log2_output_element_size,
.log2_csize = log2_output_element_size,
.ukernel = igemm_ukernel,
};
memcpy(&convolution_op->context.igemm.params, params, sizeof(convolution_op->context.igemm.params));
size_t nc = group_output_channels;
if (num_threads > 1) {
const size_t num_other_tiles = groups * batch_size * divide_round_up(output_size, mr);
const size_t target_tiles_per_thread = 5;
const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
if (max_nc < nc) {
nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
}
}
if (groups == 1) {
convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_igemm;
convolution_op->compute.range[0] = batch_size;
convolution_op->compute.range[1] = output_size;
convolution_op->compute.range[2] = group_output_channels;
convolution_op->compute.tile[0] = mr;
convolution_op->compute.tile[1] = nc;
} else {
convolution_op->compute.type = xnn_parallelization_type_4d_tile_2d;
convolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_gigemm;
convolution_op->compute.range[0] = batch_size;
convolution_op->compute.range[1] = groups;
convolution_op->compute.range[2] = output_size;
convolution_op->compute.range[3] = group_output_channels;
convolution_op->compute.tile[0] = mr;
convolution_op->compute.tile[1] = nc;
}
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
case xnn_ukernel_type_dwconv:
{
size_t valid_batch_size = 0;
if (input == convolution_op->last_input &&
input_height == convolution_op->last_input_height &&
input_width == convolution_op->last_input_width)
{
valid_batch_size = convolution_op->valid_batch_size;
if (batch_size <= valid_batch_size) {
convolution_op->compute.range[0] = batch_size * convolution_op->output_height;
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
}
const size_t kernel_height = convolution_op->kernel_height;
const size_t kernel_width = convolution_op->kernel_width;
const size_t kernel_size = kernel_height * kernel_width;
const size_t output_height = convolution_op->output_height;
const size_t output_width = convolution_op->output_width;
const size_t step_width = convolution_op->dilation_width == 1 ? convolution_op->stride_width : kernel_width;
const size_t step_height = kernel_size + (output_width * step_width - 1) * kernel_height;
const size_t indirection_buffer_size = sizeof(void*) * batch_size * output_height * step_height;
const void** indirection_buffer =
(const void**) realloc(convolution_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
return xnn_status_out_of_memory;
}
convolution_op->indirection_buffer = indirection_buffer;
xnn_indirection_init_dwconv2d(convolution_op, valid_batch_size, step_height, step_width, log2_input_element_size);
const size_t groups = convolution_op->groups;
convolution_op->context.dwconv = (struct dwconv_context) {
.groups = groups,
.indirection_buffer = convolution_op->indirection_buffer,
.indirection_buffer_row_stride = step_height,
.indirection_buffer_col_stride = kernel_height * step_width * sizeof(void*),
.packed_weights = convolution_op->packed_weights,
.output = convolution_op->output,
.output_width = output_width,
.output_row_stride = output_width * convolution_op->output_pixel_stride << log2_output_element_size,
.output_col_increment = (convolution_op->output_pixel_stride - groups) << log2_output_element_size,
.unipass_ukernel = convolution_op->ukernel.dwconv.unipass_function,
};
memcpy(&convolution_op->context.dwconv.params, params, sizeof(convolution_op->context.dwconv.params));
convolution_op->compute.type = xnn_parallelization_type_1d;
convolution_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_dwconv_unipass;
convolution_op->compute.range[0] = batch_size * output_height;
convolution_op->state = xnn_run_state_ready;
convolution_op->last_input = input;
convolution_op->last_input_height = input_height;
convolution_op->last_input_width = input_width;
convolution_op->valid_batch_size = max(valid_batch_size, batch_size);
return xnn_status_success;
}
case xnn_ukernel_type_vmulcaddc:
{
const size_t batch_output_size = batch_size * convolution_op->output_height * convolution_op->output_width;
convolution_op->context.vmulcaddc = (struct vmulcaddc_context) {
.n = convolution_op->groups << log2_input_element_size,
.x = input,
.x_stride = convolution_op->input_pixel_stride << log2_input_element_size,
.w = convolution_op->packed_weights,
.y = output,
.y_stride = convolution_op->output_pixel_stride << log2_output_element_size,
.ukernel = convolution_op->ukernel.vmulcaddc.function,
};
memcpy(&convolution_op->context.vmulcaddc.params, params, sizeof(convolution_op->context.vmulcaddc.params));
size_t mc = batch_output_size;
if (num_threads > 1) {
const size_t target_tiles_per_thread = 5;
const size_t max_mc = divide_round_up(batch_output_size, num_threads * target_tiles_per_thread);
if (max_mc < mc) {
const uint32_t mr = convolution_op->ukernel.vmulcaddc.mr;
mc = min(mc, divide_round_up(mc, max_mc * mr) * mr);
}
}
convolution_op->compute.type = xnn_parallelization_type_1d_tile_1d;
convolution_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_vmulcaddc;
convolution_op->compute.range[0] = batch_output_size;
convolution_op->compute.tile[0] = mc;
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
default:
XNN_UNREACHABLE;
}
}
enum xnn_status xnn_setup_convolution2d_nhwc_q8(
xnn_operator_t convolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const uint8_t* input,
uint8_t* output,
pthreadpool_t threadpool)
{
if (convolution_op->type != xnn_operator_type_convolution_q8) {
xnn_log_error("failed to setup Convolution (Q8) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
return setup_convolution2d_nhwc(
convolution_op,
batch_size, input_height, input_width,
input, output,
0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */,
0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
sizeof(int32_t) /* sizeof(bias element) */,
0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */,
&convolution_op->q8_gemm_params,
pthreadpool_get_threads_count(threadpool));
}
enum xnn_status xnn_setup_convolution2d_nhwc_f32(
xnn_operator_t convolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (convolution_op->type != xnn_operator_type_convolution_f32) {
xnn_log_error("failed to setup Convolution (F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
return setup_convolution2d_nhwc(
convolution_op,
batch_size, input_height, input_width,
input, output,
2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
sizeof(float) /* sizeof(bias element) */,
2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
&convolution_op->f32_output_params,
pthreadpool_get_threads_count(threadpool));
}