blob: 9fbea423d3db685486693f94de272d3899f640ef [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
class PReLUMicrokernelTester {
public:
enum class Variant {
Native,
Scalar,
};
inline PReLUMicrokernelTester& rows(size_t rows) {
assert(rows != 0);
this->rows_ = rows;
return *this;
}
inline size_t rows() const {
return this->rows_;
}
inline PReLUMicrokernelTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline PReLUMicrokernelTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return channels();
} else {
assert(this->input_stride_ >= channels());
return this->input_stride_;
}
}
inline PReLUMicrokernelTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline size_t output_stride() const {
if (this->output_stride_ == 0) {
return channels();
} else {
assert(this->output_stride_ >= channels());
return this->output_stride_;
}
}
inline PReLUMicrokernelTester& inplace(bool inplace) {
this->inplace_ = inplace;
return *this;
}
inline bool inplace() const {
return this->inplace_;
}
inline PReLUMicrokernelTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline PReLUMicrokernelTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline PReLUMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void Test(xnn_f32_prelu_ukernel_function prelu, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), rng);
std::vector<float> x(channels() + (rows() - 1) * input_stride() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float, AlignedAllocator<float, 16>> w(channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y(channels() + (rows() - 1) * output_stride() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y_ref(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), std::ref(f32irng));
std::generate(w.begin(), w.end(), std::ref(f32wrng));
if (inplace()) {
std::generate(y.begin(), y.end(), std::ref(f32irng));
} else {
std::fill(y.begin(), y.end(), nanf(""));
}
const float* x_data = inplace() ? y.data() : x.data();
// Compute reference results, without clamping.
for (size_t i = 0; i < channels(); i++) {
y_ref[i] = std::signbit(x_data[i]) ? x_data[i] * w[i] : x_data[i];
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float y_min = accumulated_range == 0.0f ?
-std::numeric_limits<float>::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin());
const float y_max = accumulated_range == 0.0f ?
+std::numeric_limits<float>::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
// Prepare output parameters.
xnn_f32_output_params output_params = { };
switch (variant) {
case Variant::Native:
output_params = xnn_init_f32_output_params(y_min, y_max);
break;
case Variant::Scalar:
output_params = xnn_init_scalar_f32_output_params(y_min, y_max);
break;
}
// Clamp reference results.
for (float& value : y_ref) {
value = std::min(std::max(value, y_min), y_max);
}
// Call optimized micro-kernel.
prelu(rows(), channels() * sizeof(float),
x_data, input_stride() * sizeof(float),
w.data(),
y.data(), output_stride() * sizeof(float),
&output_params);
// Verify results.
for (size_t i = 0; i < channels(); i++) {
ASSERT_LE(y[i], y_max)
<< "at " << i << ", channels = " << channels();
ASSERT_GE(y[i], y_min)
<< "at " << i << ", channels = " << channels();
ASSERT_NEAR(y[i], y_ref[i], 1.0e-6f * std::abs(y_ref[i]))
<< "at " << i << ", channels = " << channels();
}
}
}
private:
size_t rows_{1};
size_t channels_{1};
size_t input_stride_{0};
size_t output_stride_{0};
bool inplace_{false};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t iterations_{15};
};