| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/params.h> |
| |
| |
| class RAddExtExpMicrokernelTester { |
| public: |
| inline RAddExtExpMicrokernelTester& n(size_t n) { |
| assert(n != 0); |
| this->n_ = n; |
| return *this; |
| } |
| |
| inline size_t n() const { |
| return this->n_; |
| } |
| |
| inline RAddExtExpMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void test(xnn_f32_raddextexp_ukernel_function raddextexp) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| // Choose such range that expf(x[i]) overflows, but double-precision exp doesn't overflow. |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(90.0f, 100.0f), rng); |
| |
| std::vector<float> x(n() + XNN_EXTRA_BYTES / sizeof(float)); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| |
| // Compute reference results. |
| double sum_ref = 0.0f; |
| for (size_t i = 0; i < n(); i++) { |
| sum_ref += exp(double(x[i])); |
| } |
| |
| // Call optimized micro-kernel. |
| float sum[2] = { nanf(""), nanf("") }; |
| raddextexp(n() * sizeof(float), x.data(), sum); |
| |
| // Verify results. |
| ASSERT_NEAR(sum_ref, exp2(double(sum[1])) * double(sum[0]), std::abs(sum_ref) * 1.0e-6) |
| << "n = " << n() << ", y:value = " << sum[0] << ", y:exponent = " << sum[1]; |
| } |
| } |
| |
| private: |
| size_t n_{1}; |
| size_t iterations_{15}; |
| }; |