blob: f97499a1dcf7a6103250d5869f956040087fd639 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ROW_TILE >= 1
$assert ACCUMULATORS >= 1
$VMULADDQ_LANE_F32 = "vfmaq_lane_f32" if FMA else "vmlaq_lane_f32"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>
void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__${"neonfma" if FMA else "neon"}_${ROW_TILE}x4${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}(
size_t input_height,
size_t input_width,
const float* input,
const float* weights,
const float* zero,
float* output,
uint32_t padding_top,
const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(input_height != 0);
assert(input_width != 0);
assert(input_width % sizeof(float) == 0);
assert(padding_top >= 0);
assert(padding_top <= 1);
const uint32x4_t vmask_even = vld1q_u32(params->neon.mask_even);
const uint32x4_t vmask_odd = vld1q_u32(params->neon.mask_odd);
const float32x4_t vmax = vld1q_dup_f32(&params->neon.max);
const float32x4_t vmin = vld1q_dup_f32(&params->neon.min);
const float32x4_t vw0123 = vld1q_f32(weights);
const float32x4_t vw4567 = vld1q_f32(weights + 4);
const float32x2_t vw89 = vld1_f32(weights + 8);
const size_t input_decrement = round_down_po2(input_width, 4 /* SIMD output width */ * 2 /* subsampling */ * sizeof(float));
$if ROW_TILE > 1:
const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float));
const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width));
const float* i1 = (const float*) ((uintptr_t) i0 + input_width);
if XNN_UNPREDICTABLE(padding_top != 0) {
i0 = zero;
}
$for M in range(2, 1 + 2 * ROW_TILE):
const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);
float* o0 = output;
$for M in range(1, ROW_TILE):
float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width);
size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */;
size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2;
do {
$for M in range(2, 1 + 2 * ROW_TILE):
if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) {
i${M} = zero;
$if M % 2 == 1:
o${(M - 1) / 2} = o${(M - 1) / 2 - 1};
}
$for M in range(1 + 2 * ROW_TILE):
float32x4_t vi${M}x1357 = vmovq_n_f32(0.0f);
size_t w = input_width;
for (; w >= 8 * sizeof(float); w -= 8 * sizeof(float)) {
$for M in range(ROW_TILE):
float32x4_t vo${M}p0 = vdupq_lane_f32(vget_low_f32(vw0123), 0);
$for M in range(1 + 2 * ROW_TILE):
const float32x4x2_t vi${M}x8ACE9BDF = vld2q_f32(i${M}); i${M} += 8;
$for M in range(ROW_TILE):
$if ACCUMULATORS > 1:
float32x4_t vo${M}p1 = vmulq_lane_f32(vi${2*M}x8ACE9BDF.val[0], vget_high_f32(vw0123), 0);
$else:
vo${M}p0 = ${VMULADDQ_LANE_F32}(vo${M}p0, vi${2*M}x8ACE9BDF.val[0], vget_high_f32(vw0123), 0);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 2:
float32x4_t vo${M}p2 = vmulq_lane_f32(vi${2*M+1}x8ACE9BDF.val[0], vget_low_f32(vw4567), 1);
$else:
vo${M}p0 = ${VMULADDQ_LANE_F32}(vo${M}p0, vi${2*M+1}x8ACE9BDF.val[0], vget_low_f32(vw4567), 1);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 3:
float32x4_t vo${M}p3 = vmulq_lane_f32(vi${2*M+2}x8ACE9BDF.val[0], vw89, 0);
$else:
vo${M}p${4 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${4 % ACCUMULATORS}, vi${2*M+2}x8ACE9BDF.val[0], vw89, 0);
$for M in range(1 + 2 * ROW_TILE):
const float32x4_t vi${M}x7BDF = vextq_f32(vi${M}x1357, vi${M}x8ACE9BDF.val[1], 3);
vi${M}x1357 = vi${M}x8ACE9BDF.val[1];
$for M in range(ROW_TILE):
$if ACCUMULATORS > 4:
float32x4_t vo${M}p4 = vmulq_lane_f32(vi${2*M}x7BDF, vget_low_f32(vw0123), 1);
$else:
vo${M}p${5 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${5 % ACCUMULATORS}, vi${2*M}x7BDF, vget_low_f32(vw0123), 1);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 5:
float32x4_t vo${M}p5 = vmulq_lane_f32(vi${2*M+1}x7BDF, vget_low_f32(vw4567), 0);
$else:
vo${M}p${6 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${6 % ACCUMULATORS}, vi${2*M+1}x7BDF, vget_low_f32(vw4567), 0);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 6:
float32x4_t vo${M}p6 = vmulq_lane_f32(vi${2*M+2}x7BDF, vget_low_f32(vw4567), 1);
$else:
vo${M}p${7 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${7 % ACCUMULATORS}, vi${2*M+2}x7BDF, vget_high_f32(vw4567), 1);
$for M in range(ROW_TILE):
vo${M}p${8 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${8 % ACCUMULATORS}, vi${2*M}x8ACE9BDF.val[1], vget_high_f32(vw0123), 1);
$for M in range(ROW_TILE):
vo${M}p${9 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${9 % ACCUMULATORS}, vi${2*M+1}x8ACE9BDF.val[1], vget_high_f32(vw4567), 0);
$for M in range(ROW_TILE):
vo${M}p${10 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${10 % ACCUMULATORS}, vi${2*M+2}x8ACE9BDF.val[1], vw89, 1);
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for M in range(ROW_TILE):
vo${M}p${A} = vaddq_f32(vo${M}p${A}, vo${M}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for M in range(ROW_TILE):
float32x4_t vo${M} = vmaxq_f32(vo${M}p0, vmin);
$for M in range(ROW_TILE):
vo${M} = vminq_f32(vo${M}, vmax);
$for M in reversed(range(ROW_TILE)):
vst1q_f32(o${M}, vo${M}); o${M} += 4;
}
// Last block has 0-7 pixels to process.
assert(w < 8 * sizeof(float));
if XNN_LIKELY(w != 0) {
$for M in range(ROW_TILE):
float32x4_t vo${M}p0 = vdupq_lane_f32(vget_low_f32(vw0123), 0);
$for M in range(1 + 2 * ROW_TILE):
const float32x4x2_t vi${M}x8ACE9BDF = vld2q_f32(i${M});
$for M in range(1 + 2 * ROW_TILE):
const float32x4_t vi${M}x8ACE = vreinterpretq_f32_u32(vandq_u32(vmask_even, vreinterpretq_u32_f32(vi${M}x8ACE9BDF.val[0])));
const float32x4_t vi${M}x9BDF = vreinterpretq_f32_u32(vandq_u32(vmask_odd, vreinterpretq_u32_f32(vi${M}x8ACE9BDF.val[1])));
$for M in range(ROW_TILE):
$if ACCUMULATORS > 1:
float32x4_t vo${M}p1 = vmulq_lane_f32(vi${2*M}x8ACE, vget_high_f32(vw0123), 0);
$else:
vo${M}p0 = ${VMULADDQ_LANE_F32}(vo${M}p0, vi${2*M}x8ACE, vget_high_f32(vw0123), 0);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 2:
float32x4_t vo${M}p2 = vmulq_lane_f32(vi${2*M+1}x8ACE, vget_low_f32(vw4567), 1);
$else:
vo${M}p0 = ${VMULADDQ_LANE_F32}(vo${M}p0, vi${2*M+1}x8ACE, vget_low_f32(vw4567), 1);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 3:
float32x4_t vo${M}p3 = vmulq_lane_f32(vi${2*M+2}x8ACE, vw89, 0);
$else:
vo${M}p${4 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${4 % ACCUMULATORS}, vi${2*M+2}x8ACE, vw89, 0);
$for M in range(1 + 2 * ROW_TILE):
const float32x4_t vi${M}x7BDF = vextq_f32(vi${M}x1357, vi${M}x9BDF, 3);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 4:
float32x4_t vo${M}p4 = vmulq_lane_f32(vi${2*M}x7BDF, vget_low_f32(vw0123), 1);
$else:
vo${M}p${5 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${5 % ACCUMULATORS}, vi${2*M}x7BDF, vget_low_f32(vw0123), 1);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 5:
float32x4_t vo${M}p5 = vmulq_lane_f32(vi${2*M+1}x7BDF, vget_low_f32(vw4567), 0);
$else:
vo${M}p${6 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${6 % ACCUMULATORS}, vi${2*M+1}x7BDF, vget_low_f32(vw4567), 0);
$for M in range(ROW_TILE):
$if ACCUMULATORS > 6:
float32x4_t vo${M}p6 = vmulq_lane_f32(vi${2*M+2}x7BDF, vget_low_f32(vw4567), 1);
$else:
vo${M}p${7 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${7 % ACCUMULATORS}, vi${2*M+2}x7BDF, vget_high_f32(vw4567), 1);
$for M in range(ROW_TILE):
vo${M}p${8 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${8 % ACCUMULATORS}, vi${2*M}x9BDF, vget_high_f32(vw0123), 1);
$for M in range(ROW_TILE):
vo${M}p${9 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${9 % ACCUMULATORS}, vi${2*M+1}x9BDF, vget_high_f32(vw4567), 0);
$for M in range(ROW_TILE):
vo${M}p${10 % ACCUMULATORS} = ${VMULADDQ_LANE_F32}(vo${M}p${10 % ACCUMULATORS}, vi${2*M+2}x9BDF, vw89, 1);
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for M in range(ROW_TILE):
vo${M}p${A} = vaddq_f32(vo${M}p${A}, vo${M}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for M in range(ROW_TILE):
float32x4_t vo${M} = vmaxq_f32(vo${M}p0, vmin);
$for M in range(ROW_TILE):
vo${M} = vminq_f32(vo${M}, vmax);
w += 1 * sizeof(float);
if (w & (8 * sizeof(float))) {
$for M in reversed(range(ROW_TILE)):
vst1q_f32(o${M}, vo${M}); o${M} += 4;
} else {
$for M in range(ROW_TILE):
float32x2_t vo${M}_lo = vget_low_f32(vo${M});
if (w & (4 * sizeof(float))) {
$for M in reversed(range(ROW_TILE)):
vst1_f32(o${M}, vo${M}_lo); o${M} += 2;
$for M in range(ROW_TILE):
vo${M}_lo = vget_high_f32(vo${M});
}
if (w & (2 * sizeof(float))) {
$for M in reversed(range(ROW_TILE)):
vst1_lane_f32(o${M}, vo${M}_lo, 0); o${M} += 1;
}
}
}
i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE} - input_decrement);
$for M in range(1, 1 + 2 * ROW_TILE):
i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);
$if ROW_TILE > 1:
o0 = o${ROW_TILE - 1};
$for M in range(1, ROW_TILE):
o${M} = (float*) ((uintptr_t) o${M-1} + output_width);
$if ROW_TILE > 1:
output_height = doz(output_height, ${ROW_TILE});
padded_input_height = doz(padded_input_height, ${ROW_TILE * 2});
$else:
output_height -= 1;
padded_input_height -= 2;
} while (output_height != 0);
}