blob: 1a3f5970ef24960fe27c9606a2d478a2944d7ae0 [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/qs8-gemm/MRx4c2-sse.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#if defined(__GNUC__) || defined(__clang__)
#include <x86intrin.h>
#else
#include <immintrin.h>
#include <ammintrin.h>
#endif
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
void xnn_qs8_gemm_minmax_ukernel_1x4c2__xop_ld64(
size_t mr,
size_t nc,
size_t kc,
const int8_t* restrict a,
size_t a_stride,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(mr != 0);
assert(mr <= 1);
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(int8_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
kc = round_up_po2(kc, 2);
const int8_t* a0 = a;
int8_t* c0 = c;
do {
__m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
size_t k = kc;
while (k >= 8 * sizeof(int8_t)) {
const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
a0 += 8;
const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
const __m128i vxb0 = _mm_cvtepi8_epi16(vb0);
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 8 * sizeof(int8_t)));
const __m128i vxb1 = _mm_cvtepi8_epi16(vb1);
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 16 * sizeof(int8_t)));
const __m128i vxb2 = _mm_cvtepi8_epi16(vb2);
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 24 * sizeof(int8_t)));
const __m128i vxb3 = _mm_cvtepi8_epi16(vb3);
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123);
w = (const void*) ((uintptr_t) w + 32 * sizeof(int8_t));
k -= 8 * sizeof(int8_t);
}
if (k != 0) {
const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
a0 = (const int8_t*) ((uintptr_t) a0 + k);
const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
const __m128i vxb0 = _mm_cvtepi8_epi16(vb0);
w = (const void*) ((uintptr_t) w + 8 * sizeof(int8_t));
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
if (k > 2 * sizeof(int8_t)) {
const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
const __m128i vxb1 = _mm_cvtepi8_epi16(vb1);
w = (const void*) ((uintptr_t) w + 8 * sizeof(int8_t));
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
if (k > 4 * sizeof(int8_t)) {
const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
const __m128i vxb2 = _mm_cvtepi8_epi16(vb2);
w = (const void*) ((uintptr_t) w + 8 * sizeof(int8_t));
vacc0x0123 = _mm_maddd_epi16(
_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
}
}
}
const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse4.multiplier);
const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse4.rounding);
const __m128i vacc0x1133 = _mm_shuffle_epi32(vacc0x0123, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vprod0x02 = _mm_add_epi64(_mm_mul_epi32(vacc0x0123, vmultiplier), vrounding);
const __m128i vprod0x13 = _mm_add_epi64(_mm_mul_epi32(vacc0x1133, vmultiplier), vrounding);
const __m128i vq31prod0x02 = _mm_srli_epi64(vprod0x02, 31);
const __m128i vq31prod0x13 = _mm_add_epi64(vprod0x13, vprod0x13);
const __m128i vq31prod0x0123 = _mm_blend_epi16(vq31prod0x02, vq31prod0x13, 0xCC);
const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse4.remainder_mask);
const __m128i vrem0x0123 =
_mm_add_epi32(_mm_and_si128(vq31prod0x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod0x0123));
const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse4.remainder_threshold);
const __m128i vshift = _mm_load_si128((const __m128i*) params->sse4.shift);
vacc0x0123 =
_mm_sub_epi32(_mm_sra_epi32(vq31prod0x0123, vshift), _mm_cmpgt_epi32(vrem0x0123, vremainder_threshold));
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse4.output_zero_point);
__m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point);
__m128i vout = _mm_packs_epi16(vacc00x0123, vacc00x0123);
vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->sse4.output_min));
vout = _mm_min_epi8(vout, _mm_load_si128((const __m128i*) params->sse4.output_max));
if (nc >= 4) {
*((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
a0 = (const int8_t*) ((uintptr_t) a0 - kc);
nc -= 4;
} else {
if (nc & 2) {
*((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
c0 += 2;
vout = _mm_srli_epi32(vout, 16);
}
if (nc & 1) {
*((int8_t*) c0) = (int8_t) _mm_extract_epi8(vout, 0);
}
nc = 0;
}
} while (nc != 0);
}