| // Auto-generated file. Do not edit! |
| // Template: src/qs8-gemm/MRx4c2-sse.c.in |
| // Generator: tools/xngen |
| // |
| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| #include <x86intrin.h> |
| #else |
| #include <immintrin.h> |
| #include <ammintrin.h> |
| #endif |
| |
| #include <xnnpack/gemm.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_qs8_gemm_minmax_ukernel_1x4c2__xop_ld64( |
| size_t mr, |
| size_t nc, |
| size_t kc, |
| const int8_t* restrict a, |
| size_t a_stride, |
| const void* restrict w, |
| int8_t* restrict c, |
| size_t cm_stride, |
| size_t cn_stride, |
| const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN |
| { |
| assert(mr != 0); |
| assert(mr <= 1); |
| assert(nc != 0); |
| assert(kc != 0); |
| assert(kc % sizeof(int8_t) == 0); |
| assert(a != NULL); |
| assert(w != NULL); |
| assert(c != NULL); |
| |
| kc = round_up_po2(kc, 2); |
| const int8_t* a0 = a; |
| int8_t* c0 = c; |
| |
| do { |
| __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w); |
| w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t)); |
| |
| size_t k = kc; |
| while (k >= 8 * sizeof(int8_t)) { |
| const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0); |
| const __m128i vxa0 = _mm_cvtepi8_epi16(va0); |
| a0 += 8; |
| |
| const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w); |
| const __m128i vxb0 = _mm_cvtepi8_epi16(vb0); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123); |
| const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 8 * sizeof(int8_t))); |
| const __m128i vxb1 = _mm_cvtepi8_epi16(vb1); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123); |
| const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 16 * sizeof(int8_t))); |
| const __m128i vxb2 = _mm_cvtepi8_epi16(vb2); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123); |
| const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 24 * sizeof(int8_t))); |
| const __m128i vxb3 = _mm_cvtepi8_epi16(vb3); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123); |
| |
| w = (const void*) ((uintptr_t) w + 32 * sizeof(int8_t)); |
| k -= 8 * sizeof(int8_t); |
| } |
| if (k != 0) { |
| const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0); |
| const __m128i vxa0 = _mm_cvtepi8_epi16(va0); |
| a0 = (const int8_t*) ((uintptr_t) a0 + k); |
| |
| const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w); |
| const __m128i vxb0 = _mm_cvtepi8_epi16(vb0); |
| w = (const void*) ((uintptr_t) w + 8 * sizeof(int8_t)); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123); |
| |
| if (k > 2 * sizeof(int8_t)) { |
| const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w); |
| const __m128i vxb1 = _mm_cvtepi8_epi16(vb1); |
| w = (const void*) ((uintptr_t) w + 8 * sizeof(int8_t)); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123); |
| |
| if (k > 4 * sizeof(int8_t)) { |
| const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w); |
| const __m128i vxb2 = _mm_cvtepi8_epi16(vb2); |
| w = (const void*) ((uintptr_t) w + 8 * sizeof(int8_t)); |
| |
| vacc0x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123); |
| } |
| } |
| } |
| |
| const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse4.multiplier); |
| const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse4.rounding); |
| |
| const __m128i vacc0x1133 = _mm_shuffle_epi32(vacc0x0123, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| const __m128i vprod0x02 = _mm_add_epi64(_mm_mul_epi32(vacc0x0123, vmultiplier), vrounding); |
| |
| const __m128i vprod0x13 = _mm_add_epi64(_mm_mul_epi32(vacc0x1133, vmultiplier), vrounding); |
| |
| const __m128i vq31prod0x02 = _mm_srli_epi64(vprod0x02, 31); |
| const __m128i vq31prod0x13 = _mm_add_epi64(vprod0x13, vprod0x13); |
| |
| const __m128i vq31prod0x0123 = _mm_blend_epi16(vq31prod0x02, vq31prod0x13, 0xCC); |
| |
| const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse4.remainder_mask); |
| const __m128i vrem0x0123 = |
| _mm_add_epi32(_mm_and_si128(vq31prod0x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod0x0123)); |
| |
| const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse4.remainder_threshold); |
| const __m128i vshift = _mm_load_si128((const __m128i*) params->sse4.shift); |
| vacc0x0123 = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod0x0123, vshift), _mm_cmpgt_epi32(vrem0x0123, vremainder_threshold)); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse4.output_zero_point); |
| __m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point); |
| |
| |
| __m128i vout = _mm_packs_epi16(vacc00x0123, vacc00x0123); |
| |
| vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->sse4.output_min)); |
| vout = _mm_min_epi8(vout, _mm_load_si128((const __m128i*) params->sse4.output_max)); |
| |
| if (nc >= 4) { |
| *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout); |
| |
| c0 = (int8_t*) ((uintptr_t) c0 + cn_stride); |
| |
| a0 = (const int8_t*) ((uintptr_t) a0 - kc); |
| |
| nc -= 4; |
| } else { |
| if (nc & 2) { |
| *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0); |
| c0 += 2; |
| vout = _mm_srli_epi32(vout, 16); |
| } |
| if (nc & 1) { |
| *((int8_t*) c0) = (int8_t) _mm_extract_epi8(vout, 0); |
| } |
| |
| nc = 0; |
| } |
| } while (nc != 0); |
| } |