| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <initializer_list> |
| #include <limits> |
| #include <numeric> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| |
| |
| class BinaryElementwiseOperatorTester { |
| public: |
| enum class OperationType { |
| Unknown, |
| Add, |
| Divide, |
| Maximum, |
| Minimum, |
| Multiply, |
| Subtract, |
| SquaredDifference, |
| }; |
| |
| inline BinaryElementwiseOperatorTester& input1_shape(std::initializer_list<size_t> input1_shape) { |
| assert(input1_shape.size() <= XNN_MAX_TENSOR_DIMS); |
| this->input1_shape_ = std::vector<size_t>(input1_shape); |
| return *this; |
| } |
| |
| inline const std::vector<size_t>& input1_shape() const { |
| return this->input1_shape_; |
| } |
| |
| inline size_t input1_dim(size_t i) const { |
| return i < num_input1_dims() ? this->input1_shape_[i] : 1; |
| } |
| |
| inline size_t num_input1_dims() const { |
| return this->input1_shape_.size(); |
| } |
| |
| inline size_t num_input1_elements() const { |
| return std::accumulate( |
| this->input1_shape_.begin(), this->input1_shape_.end(), size_t(1), std::multiplies<size_t>()); |
| } |
| |
| inline BinaryElementwiseOperatorTester& input2_shape(std::initializer_list<size_t> input2_shape) { |
| assert(input2_shape.size() <= XNN_MAX_TENSOR_DIMS); |
| this->input2_shape_ = std::vector<size_t>(input2_shape); |
| return *this; |
| } |
| |
| inline const std::vector<size_t>& input2_shape() const { |
| return this->input2_shape_; |
| } |
| |
| inline size_t input2_dim(size_t i) const { |
| return i < num_input2_dims() ? this->input2_shape_[i] : 1; |
| } |
| |
| inline size_t num_input2_dims() const { |
| return this->input2_shape_.size(); |
| } |
| |
| inline size_t num_input2_elements() const { |
| return std::accumulate( |
| this->input2_shape_.begin(), this->input2_shape_.end(), size_t(1), std::multiplies<size_t>()); |
| } |
| |
| inline BinaryElementwiseOperatorTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline BinaryElementwiseOperatorTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline BinaryElementwiseOperatorTester& operation_type(OperationType operation_type) { |
| this->operation_type_ = operation_type; |
| return *this; |
| } |
| |
| inline OperationType operation_type() const { |
| return this->operation_type_; |
| } |
| |
| inline BinaryElementwiseOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| float Compute(float a, float b) const { |
| switch (operation_type()) { |
| case OperationType::Add: |
| return a + b; |
| case OperationType::Divide: |
| return a / b; |
| case OperationType::Maximum: |
| return std::max<float>(a, b); |
| case OperationType::Minimum: |
| return std::min<float>(a, b); |
| case OperationType::Multiply: |
| return a * b; |
| case OperationType::Subtract: |
| return a - b; |
| case OperationType::SquaredDifference: |
| return (a - b) * (a - b); |
| default: |
| return std::nanf(""); |
| } |
| } |
| |
| |
| void TestF16() const { |
| ASSERT_NE(operation_type(), OperationType::Unknown); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| // Compute generalized shapes. |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims; |
| std::fill(input1_dims.begin(), input1_dims.end(), 1); |
| std::fill(input2_dims.begin(), input2_dims.end(), 1); |
| std::fill(output_dims.begin(), output_dims.end(), 1); |
| std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims()); |
| std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims()); |
| for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) { |
| if (input1_dims[i] != 1 && input2_dims[i] != 1) { |
| ASSERT_EQ(input1_dims[i], input2_dims[i]); |
| } |
| output_dims[i] = std::max(input1_dims[i], input2_dims[i]); |
| } |
| const size_t num_output_elements = |
| std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>()); |
| |
| // Compute generalized strides. |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides; |
| size_t input1_stride = 1, input2_stride = 1, output_stride = 1; |
| for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) { |
| input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride; |
| input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride; |
| output_strides[i - 1] = output_stride; |
| input1_stride *= input1_dims[i - 1]; |
| input2_stride *= input2_dims[i - 1]; |
| output_stride *= output_dims[i - 1]; |
| } |
| |
| std::vector<uint16_t> input1(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input1_elements()); |
| std::vector<uint16_t> input2(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input2_elements()); |
| std::vector<uint16_t> output(num_output_elements); |
| std::vector<float> output_ref(num_output_elements); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input1.begin(), input1.end(), std::ref(f16rng)); |
| std::generate(input2.begin(), input2.end(), std::ref(f16rng)); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < output_dims[0]; i++) { |
| for (size_t j = 0; j < output_dims[1]; j++) { |
| for (size_t k = 0; k < output_dims[2]; k++) { |
| for (size_t l = 0; l < output_dims[3]; l++) { |
| for (size_t m = 0; m < output_dims[4]; m++) { |
| for (size_t n = 0; n < output_dims[5]; n++) { |
| output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute( |
| fp16_ieee_to_fp32_value(input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]]), |
| fp16_ieee_to_fp32_value(input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]])); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min; |
| const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max; |
| |
| for (float& output_value : output_ref) { |
| output_value = std::min(std::max(output_value, output_min), output_max); |
| } |
| |
| // Create, setup, run, and destroy a binary elementwise operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t binary_elementwise_op = nullptr; |
| xnn_status status = xnn_status_unsupported_parameter; |
| switch (operation_type()) { |
| case OperationType::Add: |
| status = xnn_create_add_nd_f16(output_min, output_max, 0, &binary_elementwise_op); |
| break; |
| default: |
| FAIL() << "Unsupported operation type"; |
| } |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, binary_elementwise_op); |
| |
| // Smart pointer to automatically delete binary_elementwise_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator); |
| |
| switch (operation_type()) { |
| case OperationType::Add: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_add_nd_f16( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| default: |
| FAIL() << "Unsupported operation type"; |
| } |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < output_dims[0]; i++) { |
| for (size_t j = 0; j < output_dims[1]; j++) { |
| for (size_t k = 0; k < output_dims[2]; k++) { |
| for (size_t l = 0; l < output_dims[3]; l++) { |
| for (size_t m = 0; m < output_dims[4]; m++) { |
| for (size_t n = 0; n < output_dims[5]; n++) { |
| const size_t index = |
| i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]; |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(output[index]), output_ref[index], 1.0e-2f * std::abs(output_ref[index])) |
| << "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| void TestF32() const { |
| ASSERT_NE(operation_type(), OperationType::Unknown); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng); |
| |
| // Compute generalized shapes. |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims; |
| std::fill(input1_dims.begin(), input1_dims.end(), 1); |
| std::fill(input2_dims.begin(), input2_dims.end(), 1); |
| std::fill(output_dims.begin(), output_dims.end(), 1); |
| std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims()); |
| std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims()); |
| for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) { |
| if (input1_dims[i] != 1 && input2_dims[i] != 1) { |
| ASSERT_EQ(input1_dims[i], input2_dims[i]); |
| } |
| output_dims[i] = std::max(input1_dims[i], input2_dims[i]); |
| } |
| const size_t num_output_elements = |
| std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>()); |
| |
| // Compute generalized strides. |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides; |
| std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides; |
| size_t input1_stride = 1, input2_stride = 1, output_stride = 1; |
| for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) { |
| input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride; |
| input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride; |
| output_strides[i - 1] = output_stride; |
| input1_stride *= input1_dims[i - 1]; |
| input2_stride *= input2_dims[i - 1]; |
| output_stride *= output_dims[i - 1]; |
| } |
| |
| std::vector<float> input1(XNN_EXTRA_BYTES / sizeof(float) + num_input1_elements()); |
| std::vector<float> input2(XNN_EXTRA_BYTES / sizeof(float) + num_input2_elements()); |
| std::vector<float> output(num_output_elements); |
| std::vector<float> output_ref(num_output_elements); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input1.begin(), input1.end(), std::ref(f32rng)); |
| std::generate(input2.begin(), input2.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < output_dims[0]; i++) { |
| for (size_t j = 0; j < output_dims[1]; j++) { |
| for (size_t k = 0; k < output_dims[2]; k++) { |
| for (size_t l = 0; l < output_dims[3]; l++) { |
| for (size_t m = 0; m < output_dims[4]; m++) { |
| for (size_t n = 0; n < output_dims[5]; n++) { |
| output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute( |
| input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]], |
| input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]); |
| } |
| } |
| } |
| } |
| } |
| } |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = num_output_elements == 1 ? |
| -std::numeric_limits<float>::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| const float output_max = num_output_elements == 1 ? |
| +std::numeric_limits<float>::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| for (float& output_value : output_ref) { |
| output_value = std::min(std::max(output_value, output_min), output_max); |
| } |
| |
| // Create, setup, run, and destroy a binary elementwise operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t binary_elementwise_op = nullptr; |
| |
| switch (operation_type()) { |
| case OperationType::Add: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_add_nd_f32( |
| output_min, output_max, |
| 0, &binary_elementwise_op)); |
| break; |
| case OperationType::Divide: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_divide_nd_f32( |
| output_min, output_max, |
| 0, &binary_elementwise_op)); |
| break; |
| case OperationType::Maximum: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_maximum_nd_f32( |
| 0, &binary_elementwise_op)); |
| break; |
| case OperationType::Minimum: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_minimum_nd_f32( |
| 0, &binary_elementwise_op)); |
| break; |
| case OperationType::Multiply: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_multiply_nd_f32( |
| output_min, output_max, |
| 0, &binary_elementwise_op)); |
| break; |
| case OperationType::Subtract: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_subtract_nd_f32( |
| output_min, output_max, |
| 0, &binary_elementwise_op)); |
| break; |
| case OperationType::SquaredDifference: |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_squared_difference_nd_f32( |
| 0, &binary_elementwise_op)); |
| break; |
| default: |
| FAIL() << "Unsupported operation type"; |
| } |
| ASSERT_NE(nullptr, binary_elementwise_op); |
| |
| // Smart pointer to automatically delete binary_elementwise_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator); |
| |
| switch (operation_type()) { |
| case OperationType::Add: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_add_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| case OperationType::Divide: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_divide_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| case OperationType::Maximum: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_maximum_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| case OperationType::Minimum: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_minimum_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| case OperationType::Multiply: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_multiply_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| case OperationType::Subtract: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_subtract_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| case OperationType::SquaredDifference: |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_squared_difference_nd_f32( |
| binary_elementwise_op, |
| num_input1_dims(), |
| input1_shape().data(), |
| num_input2_dims(), |
| input2_shape().data(), |
| input1.data(), input2.data(), output.data(), |
| nullptr /* thread pool */)); |
| break; |
| default: |
| FAIL() << "Unsupported operation type"; |
| } |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < output_dims[0]; i++) { |
| for (size_t j = 0; j < output_dims[1]; j++) { |
| for (size_t k = 0; k < output_dims[2]; k++) { |
| for (size_t l = 0; l < output_dims[3]; l++) { |
| for (size_t m = 0; m < output_dims[4]; m++) { |
| for (size_t n = 0; n < output_dims[5]; n++) { |
| const size_t index = |
| i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]; |
| ASSERT_NEAR(output[index], output_ref[index], 1.0e-6f * std::abs(output_ref[index])) |
| << "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| std::vector<size_t> input1_shape_; |
| std::vector<size_t> input2_shape_; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| OperationType operation_type_{OperationType::Unknown}; |
| size_t iterations_{3}; |
| }; |