blob: 4121e314e9e9b538b759f1f0d3909969e6fa4fb6 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <limits>
#include <numeric>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
class BinaryElementwiseOperatorTester {
public:
enum class OperationType {
Unknown,
Add,
Divide,
Maximum,
Minimum,
Multiply,
Subtract,
SquaredDifference,
};
inline BinaryElementwiseOperatorTester& input1_shape(std::initializer_list<size_t> input1_shape) {
assert(input1_shape.size() <= XNN_MAX_TENSOR_DIMS);
this->input1_shape_ = std::vector<size_t>(input1_shape);
return *this;
}
inline const std::vector<size_t>& input1_shape() const {
return this->input1_shape_;
}
inline size_t input1_dim(size_t i) const {
return i < num_input1_dims() ? this->input1_shape_[i] : 1;
}
inline size_t num_input1_dims() const {
return this->input1_shape_.size();
}
inline size_t num_input1_elements() const {
return std::accumulate(
this->input1_shape_.begin(), this->input1_shape_.end(), size_t(1), std::multiplies<size_t>());
}
inline BinaryElementwiseOperatorTester& input2_shape(std::initializer_list<size_t> input2_shape) {
assert(input2_shape.size() <= XNN_MAX_TENSOR_DIMS);
this->input2_shape_ = std::vector<size_t>(input2_shape);
return *this;
}
inline const std::vector<size_t>& input2_shape() const {
return this->input2_shape_;
}
inline size_t input2_dim(size_t i) const {
return i < num_input2_dims() ? this->input2_shape_[i] : 1;
}
inline size_t num_input2_dims() const {
return this->input2_shape_.size();
}
inline size_t num_input2_elements() const {
return std::accumulate(
this->input2_shape_.begin(), this->input2_shape_.end(), size_t(1), std::multiplies<size_t>());
}
inline BinaryElementwiseOperatorTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline BinaryElementwiseOperatorTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline BinaryElementwiseOperatorTester& operation_type(OperationType operation_type) {
this->operation_type_ = operation_type;
return *this;
}
inline OperationType operation_type() const {
return this->operation_type_;
}
inline BinaryElementwiseOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
float Compute(float a, float b) const {
switch (operation_type()) {
case OperationType::Add:
return a + b;
case OperationType::Divide:
return a / b;
case OperationType::Maximum:
return std::max<float>(a, b);
case OperationType::Minimum:
return std::min<float>(a, b);
case OperationType::Multiply:
return a * b;
case OperationType::Subtract:
return a - b;
case OperationType::SquaredDifference:
return (a - b) * (a - b);
default:
return std::nanf("");
}
}
void TestF16() const {
ASSERT_NE(operation_type(), OperationType::Unknown);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
// Compute generalized shapes.
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
std::fill(input1_dims.begin(), input1_dims.end(), 1);
std::fill(input2_dims.begin(), input2_dims.end(), 1);
std::fill(output_dims.begin(), output_dims.end(), 1);
std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims());
std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims());
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
ASSERT_EQ(input1_dims[i], input2_dims[i]);
}
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
}
const size_t num_output_elements =
std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>());
// Compute generalized strides.
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides;
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides;
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
size_t input1_stride = 1, input2_stride = 1, output_stride = 1;
for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride;
input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride;
output_strides[i - 1] = output_stride;
input1_stride *= input1_dims[i - 1];
input2_stride *= input2_dims[i - 1];
output_stride *= output_dims[i - 1];
}
std::vector<uint16_t> input1(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input1_elements());
std::vector<uint16_t> input2(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input2_elements());
std::vector<uint16_t> output(num_output_elements);
std::vector<float> output_ref(num_output_elements);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input1.begin(), input1.end(), std::ref(f16rng));
std::generate(input2.begin(), input2.end(), std::ref(f16rng));
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results.
for (size_t i = 0; i < output_dims[0]; i++) {
for (size_t j = 0; j < output_dims[1]; j++) {
for (size_t k = 0; k < output_dims[2]; k++) {
for (size_t l = 0; l < output_dims[3]; l++) {
for (size_t m = 0; m < output_dims[4]; m++) {
for (size_t n = 0; n < output_dims[5]; n++) {
output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute(
fp16_ieee_to_fp32_value(input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]]),
fp16_ieee_to_fp32_value(input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]));
}
}
}
}
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min;
const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max;
for (float& output_value : output_ref) {
output_value = std::min(std::max(output_value, output_min), output_max);
}
// Create, setup, run, and destroy a binary elementwise operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t binary_elementwise_op = nullptr;
xnn_status status = xnn_status_unsupported_parameter;
switch (operation_type()) {
case OperationType::Add:
status = xnn_create_add_nd_f16(output_min, output_max, 0, &binary_elementwise_op);
break;
default:
FAIL() << "Unsupported operation type";
}
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, binary_elementwise_op);
// Smart pointer to automatically delete binary_elementwise_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator);
switch (operation_type()) {
case OperationType::Add:
ASSERT_EQ(xnn_status_success,
xnn_setup_add_nd_f16(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
default:
FAIL() << "Unsupported operation type";
}
ASSERT_EQ(xnn_status_success,
xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < output_dims[0]; i++) {
for (size_t j = 0; j < output_dims[1]; j++) {
for (size_t k = 0; k < output_dims[2]; k++) {
for (size_t l = 0; l < output_dims[3]; l++) {
for (size_t m = 0; m < output_dims[4]; m++) {
for (size_t n = 0; n < output_dims[5]; n++) {
const size_t index =
i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[index]), output_ref[index], 1.0e-2f * std::abs(output_ref[index]))
<< "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")";
}
}
}
}
}
}
}
}
void TestF32() const {
ASSERT_NE(operation_type(), OperationType::Unknown);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
// Compute generalized shapes.
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
std::fill(input1_dims.begin(), input1_dims.end(), 1);
std::fill(input2_dims.begin(), input2_dims.end(), 1);
std::fill(output_dims.begin(), output_dims.end(), 1);
std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims());
std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims());
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
ASSERT_EQ(input1_dims[i], input2_dims[i]);
}
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
}
const size_t num_output_elements =
std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>());
// Compute generalized strides.
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides;
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides;
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
size_t input1_stride = 1, input2_stride = 1, output_stride = 1;
for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride;
input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride;
output_strides[i - 1] = output_stride;
input1_stride *= input1_dims[i - 1];
input2_stride *= input2_dims[i - 1];
output_stride *= output_dims[i - 1];
}
std::vector<float> input1(XNN_EXTRA_BYTES / sizeof(float) + num_input1_elements());
std::vector<float> input2(XNN_EXTRA_BYTES / sizeof(float) + num_input2_elements());
std::vector<float> output(num_output_elements);
std::vector<float> output_ref(num_output_elements);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input1.begin(), input1.end(), std::ref(f32rng));
std::generate(input2.begin(), input2.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), nanf(""));
// Compute reference results.
for (size_t i = 0; i < output_dims[0]; i++) {
for (size_t j = 0; j < output_dims[1]; j++) {
for (size_t k = 0; k < output_dims[2]; k++) {
for (size_t l = 0; l < output_dims[3]; l++) {
for (size_t m = 0; m < output_dims[4]; m++) {
for (size_t n = 0; n < output_dims[5]; n++) {
output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute(
input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]],
input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]);
}
}
}
}
}
}
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = num_output_elements == 1 ?
-std::numeric_limits<float>::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin());
const float output_max = num_output_elements == 1 ?
+std::numeric_limits<float>::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
for (float& output_value : output_ref) {
output_value = std::min(std::max(output_value, output_min), output_max);
}
// Create, setup, run, and destroy a binary elementwise operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t binary_elementwise_op = nullptr;
switch (operation_type()) {
case OperationType::Add:
ASSERT_EQ(xnn_status_success,
xnn_create_add_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::Divide:
ASSERT_EQ(xnn_status_success,
xnn_create_divide_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::Maximum:
ASSERT_EQ(xnn_status_success,
xnn_create_maximum_nd_f32(
0, &binary_elementwise_op));
break;
case OperationType::Minimum:
ASSERT_EQ(xnn_status_success,
xnn_create_minimum_nd_f32(
0, &binary_elementwise_op));
break;
case OperationType::Multiply:
ASSERT_EQ(xnn_status_success,
xnn_create_multiply_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::Subtract:
ASSERT_EQ(xnn_status_success,
xnn_create_subtract_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::SquaredDifference:
ASSERT_EQ(xnn_status_success,
xnn_create_squared_difference_nd_f32(
0, &binary_elementwise_op));
break;
default:
FAIL() << "Unsupported operation type";
}
ASSERT_NE(nullptr, binary_elementwise_op);
// Smart pointer to automatically delete binary_elementwise_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator);
switch (operation_type()) {
case OperationType::Add:
ASSERT_EQ(xnn_status_success,
xnn_setup_add_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Divide:
ASSERT_EQ(xnn_status_success,
xnn_setup_divide_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Maximum:
ASSERT_EQ(xnn_status_success,
xnn_setup_maximum_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Minimum:
ASSERT_EQ(xnn_status_success,
xnn_setup_minimum_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Multiply:
ASSERT_EQ(xnn_status_success,
xnn_setup_multiply_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Subtract:
ASSERT_EQ(xnn_status_success,
xnn_setup_subtract_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::SquaredDifference:
ASSERT_EQ(xnn_status_success,
xnn_setup_squared_difference_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
default:
FAIL() << "Unsupported operation type";
}
ASSERT_EQ(xnn_status_success,
xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < output_dims[0]; i++) {
for (size_t j = 0; j < output_dims[1]; j++) {
for (size_t k = 0; k < output_dims[2]; k++) {
for (size_t l = 0; l < output_dims[3]; l++) {
for (size_t m = 0; m < output_dims[4]; m++) {
for (size_t n = 0; n < output_dims[5]; n++) {
const size_t index =
i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
ASSERT_NEAR(output[index], output_ref[index], 1.0e-6f * std::abs(output_ref[index]))
<< "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")";
}
}
}
}
}
}
}
}
private:
std::vector<size_t> input1_shape_;
std::vector<size_t> input2_shape_;
uint8_t qmin_{0};
uint8_t qmax_{255};
OperationType operation_type_{OperationType::Unknown};
size_t iterations_{3};
};