| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| class DWConvCHWMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline DWConvCHWMicrokernelTester& input_tuple_size(uint32_t input_tuple_size) { |
| this->input_tuple_size_ = input_tuple_size; |
| return *this; |
| } |
| |
| inline uint32_t input_tuple_size() const { |
| return this->input_tuple_size_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& output_tuple_size(uint32_t output_tuple_size) { |
| this->output_tuple_size_ = output_tuple_size; |
| return *this; |
| } |
| |
| inline uint32_t output_tuple_size() const { |
| return this->output_tuple_size_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& padding_left(uint32_t padding_left) { |
| this->padding_left_ = padding_left; |
| return *this; |
| } |
| |
| inline uint32_t padding_left() const { |
| return this->padding_left_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& padding_right(uint32_t padding_right) { |
| this->padding_right_ = padding_right; |
| return *this; |
| } |
| |
| inline uint32_t padding_right() const { |
| return this->padding_right_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& padding_top(uint32_t padding_top) { |
| this->padding_top_ = padding_top; |
| return *this; |
| } |
| |
| inline uint32_t padding_top() const { |
| return this->padding_top_; |
| } |
| |
| |
| inline DWConvCHWMicrokernelTester& padding_bottom(uint32_t padding_bottom) { |
| this->padding_bottom_ = padding_bottom; |
| return *this; |
| } |
| inline uint32_t padding_bottom() const { |
| return this->padding_bottom_; |
| } |
| |
| inline uint32_t input_height() const { |
| return (output_height() - 1) * subsampling() + kernel_height() - padding_top() - padding_bottom(); |
| } |
| |
| inline DWConvCHWMicrokernelTester& input_width(uint32_t input_width) { |
| assert(input_width >= 1); |
| this->input_width_ = input_width; |
| return *this; |
| } |
| |
| inline uint32_t input_width() const { |
| return this->input_width_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& subsampling(uint32_t subsampling) { |
| assert(subsampling >= 1); |
| this->subsampling_ = subsampling; |
| return *this; |
| } |
| |
| inline uint32_t subsampling() const { |
| return this->subsampling_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& kernel_height(uint32_t kernel_height) { |
| assert(kernel_height != 0); |
| this->kernel_height_ = kernel_height; |
| return *this; |
| } |
| |
| inline uint32_t kernel_height() const { |
| return this->kernel_height_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& kernel_width(uint32_t kernel_width) { |
| assert(kernel_width != 0); |
| this->kernel_width_ = kernel_width; |
| return *this; |
| } |
| |
| inline uint32_t kernel_width() const { |
| return this->kernel_width_; |
| } |
| |
| inline uint32_t kernel_size() const { |
| return kernel_height() * kernel_width(); |
| } |
| |
| inline DWConvCHWMicrokernelTester& output_height(uint32_t output_height) { |
| assert(output_height >= 1); |
| this->output_height_ = output_height; |
| return *this; |
| } |
| |
| inline uint32_t output_height() const { |
| return this->output_height_; |
| } |
| |
| inline uint32_t output_width() const { |
| const uint32_t padded_input_width = padding_left() + input_width() + padding_right(); |
| if (padded_input_width <= kernel_width()) { |
| return 1; |
| } else { |
| return (padded_input_width - kernel_width()) / subsampling() + 1; |
| } |
| } |
| |
| inline DWConvCHWMicrokernelTester& input_tuple_stride(uint32_t input_tuple_stride) { |
| assert(input_tuple_stride != 0); |
| this->input_tuple_stride_ = input_tuple_stride; |
| return *this; |
| } |
| |
| inline uint32_t input_tuple_stride() const { |
| if (this->input_tuple_stride_ == 0) { |
| return this->input_tuple_size(); |
| } else { |
| return this->input_tuple_stride_; |
| } |
| } |
| |
| inline DWConvCHWMicrokernelTester& output_tuple_stride(uint32_t output_tuple_stride) { |
| assert(output_tuple_stride != 0); |
| this->output_tuple_stride_ = output_tuple_stride; |
| return *this; |
| } |
| |
| inline uint32_t output_tuple_stride() const { |
| if (this->output_tuple_stride_ == 0) { |
| return this->output_tuple_size(); |
| } else { |
| return this->output_tuple_stride_; |
| } |
| } |
| |
| inline DWConvCHWMicrokernelTester& input_width_stride(uint32_t input_width_stride) { |
| assert(input_width_stride != 0); |
| this->input_width_stride_ = input_width_stride; |
| return *this; |
| } |
| |
| inline uint32_t input_width_stride() const { |
| if (this->input_width_stride_ == 0) { |
| return (this->input_width() + input_tuple_size() - 1) / input_tuple_size() * input_tuple_size(); |
| } else { |
| return this->input_width_stride_; |
| } |
| } |
| |
| inline DWConvCHWMicrokernelTester& output_width_stride(uint32_t output_width_stride) { |
| assert(output_width_stride != 0); |
| this->output_width_stride_ = output_width_stride; |
| return *this; |
| } |
| |
| inline uint32_t output_width_stride() const { |
| if (this->output_width_stride_ == 0) { |
| return (this->output_width() + output_tuple_size() - 1) / output_tuple_size() * output_tuple_size(); |
| } else { |
| return this->output_width_stride_; |
| } |
| } |
| |
| inline DWConvCHWMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline DWConvCHWMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f32_dwconv_chw_ukernel_function dwconv, Variant variant = Variant::Native) const { |
| ASSERT_EQ(0, input_tuple_stride() % input_tuple_size()); |
| ASSERT_EQ(0, output_tuple_stride() % output_tuple_size()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| |
| std::vector<float, AlignedAllocator<float, 64>> input((input_height() - 1) * input_width_stride() + |
| (input_width() - 1) / input_tuple_size() * input_tuple_stride() + input_tuple_stride() + input_tuple_size()); |
| std::vector<float> zero((input_width() - 1) / input_tuple_size() * input_tuple_stride() + input_tuple_stride() + input_tuple_size()); |
| std::vector<float> packed_weights(kernel_size() + 1); |
| std::vector<float, AlignedAllocator<float, 64>> output((output_height() - 1) * output_width_stride() + |
| (output_width() - 1) / output_tuple_size() * output_tuple_stride() + output_tuple_size()); |
| std::vector<float> output_ref(output_height() * output_width()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::generate(packed_weights.begin(), packed_weights.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| for (size_t oy = 0; oy < output_height(); oy++) { |
| for (size_t ox = 0; ox < output_width(); ox++) { |
| float acc = packed_weights[0]; |
| for (size_t ky = 0; ky < kernel_height(); ky++) { |
| const size_t iy = oy * subsampling() + ky - padding_top(); |
| for (size_t kx = 0; kx < kernel_width(); kx++) { |
| const size_t ix = ox * subsampling() + kx - padding_left(); |
| if (ix < input_width() && iy <= input_height() - 1) { |
| float input_val = input[ iy * input_width_stride() + ix / input_tuple_size() * input_tuple_stride() + ix % input_tuple_size()]; |
| float kernel_val = packed_weights[1 + ky * kernel_width() + kx]; |
| acc += input_val * kernel_val; |
| } |
| } |
| } |
| output_ref[oy * output_width() + ox] = acc; |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| const float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| |
| // Prepare parameters. |
| xnn_f32_chw_params chw_params = { }; |
| switch (variant) { |
| case Variant::Native: |
| chw_params = xnn_init_f32_chw_params(input_width(), output_min, output_max); |
| break; |
| case Variant::Scalar: |
| chw_params = xnn_init_scalar_f32_chw_params(input_width(), output_min, output_max); |
| break; |
| } |
| |
| // Clamp reference results. |
| for (float& output_val : output_ref) { |
| output_val = std::max(std::min(output_val, output_max), output_min); |
| } |
| |
| // Call optimized micro-kernel. |
| dwconv( |
| input_height(), input_width(), |
| input.data(), packed_weights.data(), zero.data(), output.data(), |
| padding_top(), |
| input_tuple_stride() * sizeof(float), output_tuple_stride() * sizeof(float), |
| input_width_stride() * sizeof(float), output_width_stride() * sizeof(float), |
| &chw_params); |
| |
| // Verify results. |
| for (size_t y = 0; y < output_height(); y++) { |
| for (size_t x = 0; x < output_width(); x++) { |
| ASSERT_NEAR( |
| output_ref[y * output_width() + x], |
| output[y * output_width_stride() + x / output_tuple_size() * output_tuple_stride() + x % output_tuple_size()], |
| std::abs(output_ref[y * output_width() + x]) * 1.0e-5) |
| << "x = " << x << ", y = " << y; |
| } |
| } |
| |
| // Verify that remainder of the last tile left unchanged. |
| if (output_width() % output_tuple_size() != 0) { |
| for (size_t i = output.size() - output_tuple_size() + output_width() % output_tuple_size(); i < output.size(); i++) { |
| ASSERT_TRUE(std::isnan(output[i])) |
| << "i = " << i << ", output = " << output[i]; |
| } |
| } |
| } |
| } |
| |
| private: |
| uint32_t input_tuple_size_{1}; |
| uint32_t output_tuple_size_{1}; |
| uint32_t padding_left_{0}; |
| uint32_t padding_right_{0}; |
| uint32_t padding_top_{0}; |
| uint32_t padding_bottom_{0}; |
| uint32_t output_height_{1}; |
| uint32_t input_width_{1}; |
| uint32_t subsampling_{1}; |
| uint32_t kernel_height_{1}; |
| uint32_t kernel_width_{1}; |
| uint32_t input_tuple_stride_{0}; |
| uint32_t output_tuple_stride_{0}; |
| uint32_t input_width_stride_{0}; |
| uint32_t output_width_stride_{0}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{1}; |
| }; |