blob: c98ce45ca1d4cecbeb61e79e3ad5622d5fde0fb1 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
#include <xnnpack/requantization.h>
class GAvgPoolMicrokernelTester {
public:
enum class Variant {
Native,
Scalar,
};
inline GAvgPoolMicrokernelTester& rows(size_t rows) {
assert(rows != 0);
this->rows_ = rows;
return *this;
}
inline size_t rows() const {
return this->rows_;
}
inline GAvgPoolMicrokernelTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline GAvgPoolMicrokernelTester& channel_tile(size_t channel_tile) {
assert(channel_tile != 0);
this->channel_tile_ = channel_tile;
return *this;
}
inline size_t channel_tile() const {
return this->channel_tile_;
}
inline GAvgPoolMicrokernelTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return channels();
} else {
assert(this->input_stride_ >= channels());
return this->input_stride_;
}
}
inline GAvgPoolMicrokernelTester& input_scale(float input_scale) {
assert(input_scale > 0.0f);
assert(std::isnormal(input_scale));
this->input_scale_ = input_scale;
return *this;
}
inline float input_scale() const {
return this->input_scale_;
}
inline GAvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
this->input_zero_point_ = input_zero_point;
return *this;
}
inline uint8_t input_zero_point() const {
return this->input_zero_point_;
}
inline GAvgPoolMicrokernelTester& output_scale(float output_scale) {
assert(output_scale > 0.0f);
assert(std::isnormal(output_scale));
this->output_scale_ = output_scale;
return *this;
}
inline float output_scale() const {
return this->output_scale_;
}
inline GAvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
this->output_zero_point_ = output_zero_point;
return *this;
}
inline uint8_t output_zero_point() const {
return this->output_zero_point_;
}
inline GAvgPoolMicrokernelTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline GAvgPoolMicrokernelTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline GAvgPoolMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void Test(xnn_qu8_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
(rows() - 1) * input_stride() + channels());
std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> output(channels());
std::vector<uint8_t> output_ref(channels());
std::vector<float> output_fp(channels());
std::vector<int32_t> accumulators(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u8rng));
std::fill(output.begin(), output.end(), 0xA5);
// Prepare parameters.
union xnn_qu8_avgpool_params quantization_params = { };
switch (variant) {
case Variant::Native:
quantization_params = xnn_init_qu8_avgpool_params(
-int32_t(input_zero_point()) * int32_t(rows()),
input_scale() / (output_scale() * float(rows())),
output_zero_point(), qmin(), qmax());
break;
case Variant::Scalar:
quantization_params = xnn_init_scalar_qu8_avgpool_params(
-int32_t(input_zero_point()) * int32_t(rows()),
input_scale() / (output_scale() * float(rows())),
output_zero_point(), qmin(), qmax());
break;
}
const union xnn_qu8_avgpool_params scalar_quantization_params =
xnn_init_scalar_qu8_avgpool_params(
-int32_t(input_zero_point()) * int32_t(rows()),
input_scale() / (output_scale() * float(rows())),
output_zero_point(), qmin(), qmax());
// Compute reference results.
for (size_t c = 0; c < channels(); c++) {
int32_t acc = scalar_quantization_params.scalar.bias;
for (size_t n = 0; n < rows(); n++) {
acc += input[n * input_stride() + c];
}
accumulators[c] = acc;
output_ref[c] = xnn_avgpool_quantize(acc, scalar_quantization_params);
output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point());
output_fp[c] = std::min<float>(output_fp[c], float(qmax()));
output_fp[c] = std::max<float>(output_fp[c], float(qmin()));
}
// Call optimized micro-kernel.
gavgpool_minmax(rows(), channels(),
input.data(), input_stride() * sizeof(uint8_t),
zero.data(),
output.data(),
&quantization_params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(uint32_t(output[c]), uint32_t(qmax()))
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_GE(uint32_t(output[c]), uint32_t(qmin()))
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
<< ", acc = " << accumulators[c];
ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c]))
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
<< ", acc = " << accumulators[c];
}
}
}
void Test(xnn_qu8_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
(rows() - 1) * input_stride() + channels());
std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> output(channels());
std::vector<uint8_t> output_ref(channels());
std::vector<float> output_fp(channels());
std::vector<int32_t> accumulators(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u8rng));
std::fill(output.begin(), output.end(), 0xA5);
// Prepare parameters.
union xnn_qu8_avgpool_params quantization_params = { };
switch (variant) {
case Variant::Native:
quantization_params = xnn_init_qu8_avgpool_params(
-int32_t(input_zero_point()) * int32_t(rows()),
input_scale() / (output_scale() * float(rows())),
output_zero_point(), qmin(), qmax());
break;
case Variant::Scalar:
quantization_params = xnn_init_scalar_qu8_avgpool_params(
-int32_t(input_zero_point()) * int32_t(rows()),
input_scale() / (output_scale() * float(rows())),
output_zero_point(), qmin(), qmax());
break;
}
const union xnn_qu8_avgpool_params scalar_quantization_params =
xnn_init_scalar_qu8_avgpool_params(
-int32_t(input_zero_point()) * int32_t(rows()),
input_scale() / (output_scale() * float(rows())),
output_zero_point(), qmin(), qmax());
// Compute reference results.
for (size_t c = 0; c < channels(); c++) {
int32_t acc = scalar_quantization_params.scalar.bias;
for (size_t n = 0; n < rows(); n++) {
acc += input[n * input_stride() + c];
}
accumulators[c] = acc;
output_ref[c] = xnn_avgpool_quantize(acc, scalar_quantization_params);
output_fp[c] = float(acc) * (input_scale() / (output_scale() * float(rows()))) + float(output_zero_point());
output_fp[c] = std::min<float>(output_fp[c], float(qmax()));
output_fp[c] = std::max<float>(output_fp[c], float(qmin()));
}
// Call optimized micro-kernel.
gavgpool_minmax(rows(), channels(),
input.data(), input_stride() * sizeof(uint8_t),
zero.data(),
buffer.data(),
output.data(),
&quantization_params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(uint32_t(output[c]), uint32_t(qmax()))
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_GE(uint32_t(output[c]), uint32_t(qmin()))
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_NEAR(float(int32_t(output[c])), output_fp[c], 0.5f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
<< ", acc = " << accumulators[c];
ASSERT_EQ(uint32_t(output_ref[c]), uint32_t(output[c]))
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels()
<< ", acc = " << accumulators[c];
}
}
}
void Test(xnn_f16_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> output(channels());
std::vector<float> output_ref(channels());
std::fill(zero.begin(), zero.end(), 0);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f16rng));
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t n = 0; n < rows(); n++) {
acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]);
}
output_ref[c] = acc / float(rows());
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range));
const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range));
// Clamp reference results.
for (float& output_values : output_ref) {
output_values = std::max(std::min(output_values, output_max), output_min);
}
// Prepare parameters.
xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params(
fp16_ieee_from_fp32_value(1.0f / float(rows())),
fp16_ieee_from_fp32_value(output_min),
fp16_ieee_from_fp32_value(output_max));
// Call optimized micro-kernel.
gavgpool_minmax(rows(), channels(),
input.data(), input_stride() * sizeof(uint16_t),
zero.data(),
output.data(),
&params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::abs(output_ref[c]) * 1.0e-2f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
void Test(xnn_f16_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> output(channels());
std::vector<float> output_ref(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f16rng));
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t n = 0; n < rows(); n++) {
acc += fp16_ieee_to_fp32_value(input[n * input_stride() + c]);
}
output_ref[c] = acc / float(rows());
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + float(qmin()) / 255.0f * accumulated_range));
const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range));
// Prepare parameters.
xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params(
fp16_ieee_from_fp32_value(1.0f / float(rows())),
fp16_ieee_from_fp32_value(output_min),
fp16_ieee_from_fp32_value(output_max));
// Clamp reference results.
for (float& output_values : output_ref) {
output_values = std::max(std::min(output_values, output_max), output_min);
}
// Call optimized micro-kernel.
gavgpool_minmax(rows(), channels(),
input.data(), input_stride() * sizeof(uint16_t),
zero.data(),
buffer.data(),
output.data(),
&params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(fp16_ieee_to_fp32_value(output[c]), output_max)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_GE(fp16_ieee_to_fp32_value(output[c]), output_min)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[c]), output_ref[c], std::abs(output_ref[c]) * 1.0e-0f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
void Test(xnn_f32_gavgpool_minmax_unipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> output(channels());
std::vector<float> output_ref(channels());
std::fill(zero.begin(), zero.end(), 0.0f);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t n = 0; n < rows(); n++) {
acc += input[n * input_stride() + c];
}
output_ref[c] = acc / float(rows());
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Clamp reference results.
for (float& output_values : output_ref) {
output_values = std::max(std::min(output_values, output_max), output_min);
}
// Prepare parameters.
union xnn_f32_scaleminmax_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_scaleminmax_params(
1.0f / float(rows()), output_min, output_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_scaleminmax_params(
1.0f / float(rows()), output_min, output_max);
break;
}
// Call optimized micro-kernel.
gavgpool_minmax(rows(), channels(),
input.data(), input_stride() * sizeof(float),
zero.data(),
output.data(),
&params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(output[c], output_max)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_GE(output[c], output_min)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
void Test(xnn_f32_gavgpool_minmax_multipass_ukernel_function gavgpool_minmax, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float, AlignedAllocator<float, 64>> buffer(channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> output(channels());
std::vector<float> output_ref(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t n = 0; n < rows(); n++) {
acc += input[n * input_stride() + c];
}
output_ref[c] = acc / float(rows());
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Prepare parameters.
union xnn_f32_scaleminmax_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_scaleminmax_params(
1.0f / float(rows()), output_min, output_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_scaleminmax_params(
1.0f / float(rows()), output_min, output_max);
break;
}
// Clamp reference results.
for (float& output_values : output_ref) {
output_values = std::max(std::min(output_values, output_max), output_min);
}
// Call optimized micro-kernel.
gavgpool_minmax(rows(), channels(),
input.data(), input_stride() * sizeof(float),
zero.data(),
buffer.data(),
output.data(),
&params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(output[c], output_max)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_GE(output[c], output_min)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
ASSERT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
private:
size_t rows_{1};
size_t channels_{1};
size_t channel_tile_{1};
size_t input_stride_{0};
float input_scale_{1.25f};
float output_scale_{0.75f};
uint8_t input_zero_point_{121};
uint8_t output_zero_point_{133};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t iterations_{15};
};