blob: 31086ef075a869e7abb5e8d8b583cc49cda21310 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
#include <xnnpack/requantization.h>
class GemmMicrokernelTester {
public:
enum class Variant {
Native,
Scalar,
};
inline GemmMicrokernelTester& mr(size_t mr) {
this->mr_ = mr;
return *this;
}
inline size_t mr() const {
return this->mr_;
}
inline GemmMicrokernelTester& nr(size_t nr) {
this->nr_ = nr;
return *this;
}
inline size_t nr() const {
return this->nr_;
}
inline GemmMicrokernelTester& kr(size_t kr) {
this->kr_ = kr;
return *this;
}
inline size_t kr() const {
return this->kr_;
}
inline GemmMicrokernelTester& sr(size_t sr) {
this->sr_ = sr;
return *this;
}
inline size_t sr() const {
return this->sr_;
}
inline GemmMicrokernelTester& m(size_t m) {
this->m_ = m;
return *this;
}
inline size_t m() const {
return this->m_;
}
inline GemmMicrokernelTester& n(size_t n) {
this->n_ = n;
return *this;
}
inline size_t n() const {
return this->n_;
}
inline GemmMicrokernelTester& k(size_t k) {
this->k_ = k;
return *this;
}
inline size_t k() const {
return this->k_;
}
inline GemmMicrokernelTester& ks(size_t ks) {
this->ks_ = ks;
return *this;
}
inline size_t ks() const {
return this->ks_;
}
inline size_t packed_k() const {
return k() % kr() == 0 ? k() : (k() / kr() + 1) * kr();
}
inline size_t packed_n() const {
return n() % nr() == 0 ? n() : (n() / nr() + 1) * nr();
}
inline size_t bias_n() const {
return n() % nr() == 0 ? n() : (n() / nr() + 1) * nr();
}
inline GemmMicrokernelTester& a_stride(size_t a_stride) {
this->a_stride_ = a_stride;
return *this;
}
inline size_t a_stride() const {
return this->a_stride_ == 0 ? k() : this->a_stride_;
}
inline GemmMicrokernelTester& cm_stride(size_t cm_stride) {
this->cm_stride_ = cm_stride;
return *this;
}
inline size_t cm_stride() const {
return this->cm_stride_ == 0 ? cn_stride() * ((n() - 1) / nr()) + (n() - 1) % nr() + 1 : this->cm_stride_;
}
inline GemmMicrokernelTester& cn_stride(size_t cn_stride) {
this->cn_stride_ = cn_stride;
return *this;
}
inline size_t cn_stride() const {
return this->cn_stride_ == 0 ? nr() : this->cn_stride_;
}
inline GemmMicrokernelTester& a_zero_point(uint8_t a_zero_point) {
this->a_zero_point_ = a_zero_point;
return *this;
}
inline uint8_t a_zero_point() const {
return this->a_zero_point_;
}
inline GemmMicrokernelTester& b_zero_point(uint8_t b_zero_point) {
this->b_zero_point_ = b_zero_point;
return *this;
}
inline uint8_t b_zero_point() const {
return this->b_zero_point_;
}
inline GemmMicrokernelTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline GemmMicrokernelTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline GemmMicrokernelTester& a_offset(size_t a_offset) {
this->a_offset_ = a_offset;
return *this;
}
inline size_t a_offset() const {
return this->a_offset_;
}
inline GemmMicrokernelTester& zero_index(size_t zero_index) {
this->zero_index_ = zero_index;
return *this;
}
inline size_t zero_index() const {
return this->zero_index_;
}
inline GemmMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void Test(xnn_qu8_gemm_ukernel_function gemm, Variant variant = Variant::Native) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<uint8_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> b(n() * k());
std::vector<int32_t> bias(n());
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> packed_w(packed_n() * packed_k() + bias_n() * sizeof(uint32_t) / sizeof(uint8_t));
std::vector<uint8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<uint8_t> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(u8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(u8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(s32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), b_zero_point());
const xnn_qu8_packing_params packing_params = { a_zero_point(), b_zero_point() };
xnn_pack_qu8_gemm_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), &packing_params);
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
acc[m_index * n() + n_index] +=
(int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point())) *
(int32_t(b[n_index * k() + k_index]) - int32_t(b_zero_point()));
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const uint8_t c_zero_point = uint8_t(std::max(std::min(
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qu8_gemm_params quantization_params = { };
switch (variant) {
case Variant::Native:
quantization_params = xnn_init_qu8_gemm_params(
a_zero_point(), b_zero_point(),
requantization_scale, c_zero_point, qmin(), qmax());
break;
case Variant::Scalar:
quantization_params = xnn_init_scalar_qu8_gemm_params(
a_zero_point(), b_zero_point(),
requantization_scale, c_zero_point, qmin(), qmax());
break;
}
const union xnn_q31_requantization_params scalar_requantization_params =
xnn_init_scalar_requantization_params(
requantization_scale, c_zero_point, qmin(), qmax());
gemm(
m(), n(), k(),
a.data(), a_stride() * sizeof(uint8_t),
packed_w.data(),
c.data(), cm_stride() * sizeof(uint8_t), cn_stride() * sizeof(uint8_t),
&quantization_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = xnn_q31_requantize(acc[m_index * n() + n_index], scalar_requantization_params);
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmax()));
ASSERT_GE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmin()));
ASSERT_EQ(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << (uint32_t) c_ref[i * n() + j]
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void Test(xnn_qu8_igemm_ukernel_function igemm, Variant variant = Variant::Native) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<uint8_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> b(n() * ks() * k());
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> packed_w(ks() * packed_n() * packed_k() + bias_n() * sizeof(uint32_t) / sizeof(uint8_t));
std::vector<int32_t> bias(n());
std::vector<uint8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<uint8_t> c_ref(m() * n());
std::vector<uint8_t> junk(k() + 8);
std::vector<const uint8_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), 0xA5);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(u8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(u8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(s32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), b_zero_point());
const xnn_qu8_packing_params packing_params = { a_zero_point(), b_zero_point() };
xnn_pack_qu8_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), &packing_params);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
if (im2col[ks_index * mr() + m_index] == a.data()) {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index]) - int32_t(a_zero_point())) *
(int32_t(b[(n_index * ks() + ks_index) * k() + k_index]) - int32_t(b_zero_point()));
} else {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index + a_offset()]) - int32_t(a_zero_point())) *
(int32_t(b[(n_index * ks() + ks_index) * k() + k_index]) - int32_t(b_zero_point()));
}
}
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const uint8_t c_zero_point = uint8_t(std::max(std::min(
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qu8_gemm_params quantization_params = { };
switch (variant) {
case Variant::Native:
quantization_params = xnn_init_qu8_gemm_params(
a_zero_point(), b_zero_point(),
requantization_scale, c_zero_point, qmin(), qmax());
break;
case Variant::Scalar:
quantization_params = xnn_init_scalar_qu8_gemm_params(
a_zero_point(), b_zero_point(),
requantization_scale, c_zero_point, qmin(), qmax());
break;
}
const union xnn_q31_requantization_params scalar_requantization_params =
xnn_init_scalar_requantization_params(
requantization_scale, c_zero_point, qmin(), qmax());
const uint8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm(
m(), n(), k(), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(uint8_t), cn_stride() * sizeof(uint8_t),
a_offset() * sizeof(uint8_t), zero_pointer,
&quantization_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = xnn_q31_requantize(acc[m_index * n() + n_index], scalar_requantization_params);
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmax()));
ASSERT_GE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmin()));
ASSERT_EQ(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void Test(xnn_f16_gemm_minmax_ukernel_function gemm_minmax, Variant variant = Variant::Native) const
{
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> b(n() * k());
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(packed_n() * packed_k() + bias_n());
std::vector<uint16_t> bias(n());
std::vector<uint16_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f16rng));
std::generate(b.begin(), b.end(), std::ref(f16rng));
std::generate(bias.begin(), bias.end(), std::ref(f16rng));
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0);
xnn_pack_f16_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
ASSERT_LT(m_index * k() + k_index, a.size());
c_ref[m_index * n() + n_index] +=
fp16_ieee_to_fp32_value(a[m_index * a_stride() + k_index]) *
fp16_ieee_to_fp32_value(b[n_index * k() + k_index]);
}
c_ref[m_index * n() + n_index] += fp16_ieee_to_fp32_value(bias[n_index]);
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin())));
const float c_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax())));
// Prepare parameters.
xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params(
UINT16_C(0x3C00) /* 1.0 */,
fp16_ieee_from_fp32_value(c_min),
fp16_ieee_from_fp32_value(c_max));
for (float& c_value : c_ref) {
c_value = std::max(std::min(c_value, c_max), c_min);
}
gemm_minmax(m(), n(), k() * sizeof(uint16_t),
a.data(), a_stride() * sizeof(uint16_t),
packed_w.data(),
c.data(), cm_stride() * sizeof(uint16_t), cn_stride() * sizeof(uint16_t),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]),
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-2f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void Test(xnn_f16_igemm_minmax_ukernel_function igemm_minmax) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> b(n() * ks() * k());
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(ks() * packed_k() * packed_n() + bias_n());
std::vector<uint16_t> bias(n());
std::vector<uint16_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<uint16_t> junk(k() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<const uint16_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), UINT16_C(0x7E00) /* NaN */);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f16rng));
std::generate(b.begin(), b.end(), std::ref(f16rng));
std::generate(bias.begin(), bias.end(), std::ref(f16rng));
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);
std::fill(c_ref.begin(), c_ref.end(), 0);
std::fill(packed_w.begin(), packed_w.end(), 0);
xnn_pack_f16_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
fp16_ieee_to_fp32_value(im2col[ks_index * mr() + m_index][k_index]) *
fp16_ieee_to_fp32_value(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
fp16_ieee_to_fp32_value(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
fp16_ieee_to_fp32_value(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += fp16_ieee_to_fp32_value(bias[n_index]);
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + (accumulated_max - accumulated_min) / 255.0f * uint16_t(qmin())));
const float c_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - (accumulated_max - accumulated_min) / 255.0f * uint16_t(255 - qmax())));
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::min(c_ref[m_index * n() + n_index], c_max);
c_ref[m_index * n() + n_index] = std::max(c_ref[m_index * n() + n_index], c_min);
}
}
// Prepare parameters.
xnn_f16_scaleminmax_params params = xnn_init_f16_scaleminmax_params(
UINT16_C(0x3C00) /* 1.0 */,
fp16_ieee_from_fp32_value(c_min),
fp16_ieee_from_fp32_value(c_max));
for (float& c_value : c_ref) {
c_value = std::max(std::min(c_value, c_max), c_min);
}
const uint16_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm_minmax(
m(), n(), k() * sizeof(uint16_t), ks() * mr() * sizeof(void*),
reinterpret_cast<const void**>(im2col.data()), packed_w.data(),
c.data(), cm_stride() * sizeof(uint16_t), cn_stride() * sizeof(uint16_t),
a_offset() * sizeof(uint16_t), zero_pointer,
&params);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_max)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_GE(fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_min)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(
fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]),
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-1f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void Test(xnn_f32_ppmm_minmax_ukernel_function ppmm, Variant variant = Variant::Native) const {
ASSERT_LE(m(), mr());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a(packed_k() * mr());
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + bias_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t i = m(); i < mr(); i++) {
for (size_t l = 0; l < k(); l++) {
a[l * mr() + i] = a[l * mr() + m() - 1];
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
for (size_t l = 0; l < k(); l++) {
c_ref[i * n() + j] +=
a[l * mr() + i] *
b[j * k() + l];
}
c_ref[i * n() + j] += bias[j];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_minmax_params(c_min, c_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_minmax_params(c_min, c_max);
break;
}
for (float& c_value : c_ref) {
c_value = std::max(std::min(c_value, c_max), c_min);
}
ppmm(m(), n(), k() * sizeof(float),
a.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void Test(xnn_f32_gemm_ukernel_function gemm) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + bias_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
gemm(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
nullptr);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void Test(xnn_f32_gemm_relu_ukernel_function gemm_relu) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + bias_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] = std::max(0.0f, c_ref[m_index * n() + n_index] + bias[n_index]);
}
}
gemm_relu(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
nullptr);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], 0.0f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void Test(xnn_f32_gemm_minmax_ukernel_function gemm_minmax, Variant variant = Variant::Native) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + bias_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_minmax_params(c_min, c_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_minmax_params(c_min, c_max);
break;
}
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min);
}
}
gemm_minmax(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void Test(xnn_f32_gemminc_minmax_ukernel_function gemminc, Variant variant = Variant::Native) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k()); // no bias_n()
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float, AlignedAllocator<float, 64>> acc(mr() * packed_n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::generate(acc.begin(), acc.end(), std::ref(f32rng));
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemminc_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), packed_w.data(), nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += acc[n_index / nr() * nr() * mr() + m_index % mr() * nr() + n_index % nr()];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_minmax_params(c_min, c_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_minmax_params(c_min, c_max);
break;
}
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min);
}
}
gemminc(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
acc.data(),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void Test(xnn_f32_igemm_ukernel_function igemm) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + bias_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
nullptr);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void Test(xnn_f32_igemm_relu_ukernel_function igemm_relu) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + bias_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] = std::max(0.0f, bias[n_index] + c_ref[m_index * n() + n_index]);
}
}
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm_relu(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
nullptr);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], 0.0f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void Test(xnn_f32_igemm_minmax_ukernel_function igemm_minmax, Variant variant = Variant::Native) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + bias_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::min(c_ref[m_index * n() + n_index], c_max);
c_ref[m_index * n() + n_index] = std::max(c_ref[m_index * n() + n_index], c_min);
}
}
// Prepare parameters.
xnn_f32_minmax_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_minmax_params(c_min, c_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_minmax_params(c_min, c_max);
break;
}
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm_minmax(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
&params);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
private:
size_t mr_{1};
size_t nr_{1};
size_t kr_{1};
size_t sr_{1};
size_t m_{1};
size_t n_{1};
size_t k_{1};
size_t ks_{1};
size_t a_stride_{0};
size_t cm_stride_{0};
size_t cn_stride_{0};
uint8_t a_zero_point_{127};
uint8_t b_zero_point_{127};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t a_offset_{0};
size_t zero_index_{SIZE_MAX};
size_t iterations_{15};
};