| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <cstddef> |
| #include <cstdlib> |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| |
| |
| class GlobalAveragePoolingOperatorTester { |
| public: |
| inline GlobalAveragePoolingOperatorTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& width(size_t width) { |
| assert(width != 0); |
| this->width_ = width; |
| return *this; |
| } |
| |
| inline size_t width() const { |
| return this->width_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return channels(); |
| } else { |
| assert(this->input_stride_ >= channels()); |
| return this->input_stride_; |
| } |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return channels(); |
| } else { |
| assert(this->output_stride_ >= channels()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& input_scale(float input_scale) { |
| assert(input_scale > 0.0f); |
| assert(std::isnormal(input_scale)); |
| this->input_scale_ = input_scale; |
| return *this; |
| } |
| |
| inline float input_scale() const { |
| return this->input_scale_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& input_zero_point(uint8_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& output_scale(float output_scale) { |
| assert(output_scale > 0.0f); |
| assert(std::isnormal(output_scale)); |
| this->output_scale_ = output_scale; |
| return *this; |
| } |
| |
| inline float output_scale() const { |
| return this->output_scale_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& output_zero_point(uint8_t output_zero_point) { |
| this->output_zero_point_ = output_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t output_zero_point() const { |
| return this->output_zero_point_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline GlobalAveragePoolingOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestNWCxQU8() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<uint8_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output(batch_size() * output_stride()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| // Compute reference results. |
| const double scale = double(input_scale()) / (double(width()) * double(output_scale())); |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| double acc = 0.0f; |
| for (size_t k = 0; k < width(); k++) { |
| acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point())); |
| } |
| output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point())); |
| output_ref[i * channels() + j] = std::min<float>(output_ref[i * channels() + j], float(qmax())); |
| output_ref[i * channels() + j] = std::max<float>(output_ref[i * channels() + j], float(qmin())); |
| } |
| } |
| |
| // Create, setup, run, and destroy Global Average Pooling operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t global_average_pooling_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_global_average_pooling_nwc_qu8( |
| channels(), input_stride(), output_stride(), |
| input_zero_point(), input_scale(), |
| output_zero_point(), output_scale(), |
| qmin(), qmax(), |
| 0, &global_average_pooling_op)); |
| ASSERT_NE(nullptr, global_average_pooling_op); |
| |
| // Smart pointer to automatically delete global_average_pooling_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_global_average_pooling_nwc_qu8( |
| global_average_pooling_op, |
| batch_size(), width(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(uint32_t(output[i * output_stride() + c]), uint32_t(qmax())); |
| ASSERT_GE(uint32_t(output[i * output_stride() + c]), uint32_t(qmin())); |
| ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f) << |
| "in batch index " << i << ", channel " << c; |
| } |
| } |
| } |
| } |
| |
| void TestNWCxF16() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> output(batch_size() * output_stride()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| // Compute reference results, without clamping. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| float acc = 0.0f; |
| for (size_t k = 0; k < width(); k++) { |
| acc += fp16_ieee_to_fp32_value(input[(i * width() + k) * input_stride() + j]); |
| } |
| output_ref[i * channels() + j] = acc / float(width()); |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min; |
| const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max; |
| |
| // Clamp reference results. |
| for (float& value : output_ref) { |
| value = std::max(std::min(value, output_max), output_min); |
| } |
| |
| // Create, setup, run, and destroy Global Average Pooling operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t global_average_pooling_op = nullptr; |
| |
| xnn_status status = xnn_create_global_average_pooling_nwc_f16( |
| channels(), input_stride(), output_stride(), |
| output_min, output_max, |
| 0, &global_average_pooling_op); |
| if (status == xnn_status_unsupported_hardware) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| ASSERT_NE(nullptr, global_average_pooling_op); |
| |
| // Smart pointer to automatically delete global_average_pooling_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_global_average_pooling_nwc_f16( |
| global_average_pooling_op, |
| batch_size(), width(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max); |
| ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min); |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-2f) << |
| "in batch index " << i << ", channel " << c; |
| } |
| } |
| } |
| } |
| |
| void TestNWCxF32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<float> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output(batch_size() * output_stride()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| // Compute reference results, without clamping. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| float acc = 0.0f; |
| for (size_t k = 0; k < width(); k++) { |
| acc += input[(i * width() + k) * input_stride() + j]; |
| } |
| output_ref[i * channels() + j] = acc / float(width()); |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_range == 0.0f ? |
| -std::numeric_limits<float>::infinity() : |
| accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| const float output_max = accumulated_range == 0.0f ? |
| +std::numeric_limits<float>::infinity() : |
| accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| |
| // Clamp reference results. |
| for (float& value : output_ref) { |
| value = std::max(std::min(value, output_max), output_min); |
| } |
| |
| // Create, setup, run, and destroy Global Average Pooling operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t global_average_pooling_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_global_average_pooling_nwc_f32( |
| channels(), input_stride(), output_stride(), |
| output_min, output_max, |
| 0, &global_average_pooling_op)); |
| ASSERT_NE(nullptr, global_average_pooling_op); |
| |
| // Smart pointer to automatically delete global_average_pooling_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_global_average_pooling_nwc_f32( |
| global_average_pooling_op, |
| batch_size(), width(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(output[i * output_stride() + c], output_max); |
| ASSERT_GE(output[i * output_stride() + c], output_min); |
| ASSERT_NEAR(output[i * output_stride() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-6f) << |
| "in batch index " << i << ", channel " << c; |
| } |
| } |
| } |
| } |
| |
| void TestNCWxF32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<float> input(batch_size() * channels() * width() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output(batch_size() * channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| // Compute reference results, without clamping. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| float acc = 0.0f; |
| for (size_t k = 0; k < width(); k++) { |
| acc += input[(i * channels() + j) * width() + k]; |
| } |
| output_ref[i * channels() + j] = acc / float(width()); |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_range == 0.0f ? |
| -std::numeric_limits<float>::infinity() : |
| accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| const float output_max = accumulated_range == 0.0f ? |
| +std::numeric_limits<float>::infinity() : |
| accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| |
| // Clamp reference results. |
| for (float& value : output_ref) { |
| value = std::max(std::min(value, output_max), output_min); |
| } |
| |
| // Create, setup, run, and destroy Global Average Pooling operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t global_average_pooling_op = nullptr; |
| |
| xnn_status status = xnn_create_global_average_pooling_ncw_f32( |
| channels(), output_min, output_max, |
| 0, &global_average_pooling_op); |
| if (status == xnn_status_unsupported_parameter) { |
| GTEST_SKIP(); |
| } |
| ASSERT_EQ(xnn_status_success, status); |
| |
| // Smart pointer to automatically delete global_average_pooling_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_global_average_pooling_ncw_f32( |
| global_average_pooling_op, |
| batch_size(), width(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_LE(output[i * channels() + c], output_max); |
| ASSERT_GE(output[i * channels() + c], output_min); |
| ASSERT_NEAR(output[i * channels() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-5f) << |
| "in batch index " << i << ", channel " << c; |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| size_t width_{1}; |
| size_t channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| float input_scale_{1.0f}; |
| float output_scale_{1.0f}; |
| uint8_t input_zero_point_{121}; |
| uint8_t output_zero_point_{133}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{1}; |
| }; |