blob: 20173e117c161e453c0df8b313da80f6f22bbd57 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <cstddef>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
class GlobalAveragePoolingOperatorTester {
public:
inline GlobalAveragePoolingOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline GlobalAveragePoolingOperatorTester& width(size_t width) {
assert(width != 0);
this->width_ = width;
return *this;
}
inline size_t width() const {
return this->width_;
}
inline GlobalAveragePoolingOperatorTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
inline size_t input_stride() const {
if (this->input_stride_ == 0) {
return channels();
} else {
assert(this->input_stride_ >= channels());
return this->input_stride_;
}
}
inline GlobalAveragePoolingOperatorTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
inline size_t output_stride() const {
if (this->output_stride_ == 0) {
return channels();
} else {
assert(this->output_stride_ >= channels());
return this->output_stride_;
}
}
inline GlobalAveragePoolingOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline GlobalAveragePoolingOperatorTester& input_scale(float input_scale) {
assert(input_scale > 0.0f);
assert(std::isnormal(input_scale));
this->input_scale_ = input_scale;
return *this;
}
inline float input_scale() const {
return this->input_scale_;
}
inline GlobalAveragePoolingOperatorTester& input_zero_point(uint8_t input_zero_point) {
this->input_zero_point_ = input_zero_point;
return *this;
}
inline uint8_t input_zero_point() const {
return this->input_zero_point_;
}
inline GlobalAveragePoolingOperatorTester& output_scale(float output_scale) {
assert(output_scale > 0.0f);
assert(std::isnormal(output_scale));
this->output_scale_ = output_scale;
return *this;
}
inline float output_scale() const {
return this->output_scale_;
}
inline GlobalAveragePoolingOperatorTester& output_zero_point(uint8_t output_zero_point) {
this->output_zero_point_ = output_zero_point;
return *this;
}
inline uint8_t output_zero_point() const {
return this->output_zero_point_;
}
inline GlobalAveragePoolingOperatorTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline GlobalAveragePoolingOperatorTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline GlobalAveragePoolingOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void TestNWCxQU8() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<uint8_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> output(batch_size() * output_stride());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u8rng));
std::fill(output.begin(), output.end(), 0xA5);
// Compute reference results.
const double scale = double(input_scale()) / (double(width()) * double(output_scale()));
for (size_t i = 0; i < batch_size(); i++) {
for (size_t j = 0; j < channels(); j++) {
double acc = 0.0f;
for (size_t k = 0; k < width(); k++) {
acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point()));
}
output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point()));
output_ref[i * channels() + j] = std::min<float>(output_ref[i * channels() + j], float(qmax()));
output_ref[i * channels() + j] = std::max<float>(output_ref[i * channels() + j], float(qmin()));
}
}
// Create, setup, run, and destroy Global Average Pooling operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t global_average_pooling_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_global_average_pooling_nwc_qu8(
channels(), input_stride(), output_stride(),
input_zero_point(), input_scale(),
output_zero_point(), output_scale(),
qmin(), qmax(),
0, &global_average_pooling_op));
ASSERT_NE(nullptr, global_average_pooling_op);
// Smart pointer to automatically delete global_average_pooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_global_average_pooling_nwc_qu8(
global_average_pooling_op,
batch_size(), width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(uint32_t(output[i * output_stride() + c]), uint32_t(qmax()));
ASSERT_GE(uint32_t(output[i * output_stride() + c]), uint32_t(qmin()));
ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f) <<
"in batch index " << i << ", channel " << c;
}
}
}
}
void TestNWCxF16() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> output(batch_size() * output_stride());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f16rng));
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
// Compute reference results, without clamping.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t j = 0; j < channels(); j++) {
float acc = 0.0f;
for (size_t k = 0; k < width(); k++) {
acc += fp16_ieee_to_fp32_value(input[(i * width() + k) * input_stride() + j]);
}
output_ref[i * channels() + j] = acc / float(width());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min;
const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max;
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Global Average Pooling operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t global_average_pooling_op = nullptr;
xnn_status status = xnn_create_global_average_pooling_nwc_f16(
channels(), input_stride(), output_stride(),
output_min, output_max,
0, &global_average_pooling_op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, global_average_pooling_op);
// Smart pointer to automatically delete global_average_pooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_global_average_pooling_nwc_f16(
global_average_pooling_op,
batch_size(), width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max);
ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min);
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-2f) <<
"in batch index " << i << ", channel " << c;
}
}
}
}
void TestNWCxF32() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> output(batch_size() * output_stride());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results, without clamping.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t j = 0; j < channels(); j++) {
float acc = 0.0f;
for (size_t k = 0; k < width(); k++) {
acc += input[(i * width() + k) * input_stride() + j];
}
output_ref[i * channels() + j] = acc / float(width());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_range == 0.0f ?
-std::numeric_limits<float>::infinity() :
accumulated_min + accumulated_range / 255.0f * float(qmin());
const float output_max = accumulated_range == 0.0f ?
+std::numeric_limits<float>::infinity() :
accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Global Average Pooling operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t global_average_pooling_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_global_average_pooling_nwc_f32(
channels(), input_stride(), output_stride(),
output_min, output_max,
0, &global_average_pooling_op));
ASSERT_NE(nullptr, global_average_pooling_op);
// Smart pointer to automatically delete global_average_pooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_global_average_pooling_nwc_f32(
global_average_pooling_op,
batch_size(), width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(output[i * output_stride() + c], output_max);
ASSERT_GE(output[i * output_stride() + c], output_min);
ASSERT_NEAR(output[i * output_stride() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-6f) <<
"in batch index " << i << ", channel " << c;
}
}
}
}
void TestNCWxF32() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> input(batch_size() * channels() * width() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> output(batch_size() * channels());
std::vector<float> output_ref(batch_size() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), std::nanf(""));
// Compute reference results, without clamping.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t j = 0; j < channels(); j++) {
float acc = 0.0f;
for (size_t k = 0; k < width(); k++) {
acc += input[(i * channels() + j) * width() + k];
}
output_ref[i * channels() + j] = acc / float(width());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_range == 0.0f ?
-std::numeric_limits<float>::infinity() :
accumulated_min + accumulated_range / 255.0f * float(qmin());
const float output_max = accumulated_range == 0.0f ?
+std::numeric_limits<float>::infinity() :
accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
// Clamp reference results.
for (float& value : output_ref) {
value = std::max(std::min(value, output_max), output_min);
}
// Create, setup, run, and destroy Global Average Pooling operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t global_average_pooling_op = nullptr;
xnn_status status = xnn_create_global_average_pooling_ncw_f32(
channels(), output_min, output_max,
0, &global_average_pooling_op);
if (status == xnn_status_unsupported_parameter) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
// Smart pointer to automatically delete global_average_pooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_global_average_pooling_ncw_f32(
global_average_pooling_op,
batch_size(), width(),
input.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
ASSERT_LE(output[i * channels() + c], output_max);
ASSERT_GE(output[i * channels() + c], output_min);
ASSERT_NEAR(output[i * channels() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-5f) <<
"in batch index " << i << ", channel " << c;
}
}
}
}
private:
size_t batch_size_{1};
size_t width_{1};
size_t channels_{1};
size_t input_stride_{0};
size_t output_stride_{0};
float input_scale_{1.0f};
float output_scale_{1.0f};
uint8_t input_zero_point_{121};
uint8_t output_zero_point_{133};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t iterations_{1};
};