blob: 3410adaaec8f26afb43b64ec99c446fcffac11ec [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack/params.h>
#include <xnnpack/requantization-stubs.h>
#include <xnnpack/scalar-utils.h>
class RequantizationTester {
public:
inline RequantizationTester& s(uint32_t s) {
this->s_ = s;
return *this;
}
inline uint32_t s() const {
return this->s_;
}
inline float scale() const {
return ldexpf(1.0f, -s());
}
inline RequantizationTester& zero_point(int32_t zero_point) {
this->zero_point_ = zero_point;
return *this;
}
inline int32_t zero_point() const {
return this->zero_point_;
}
inline RequantizationTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline RequantizationTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline RequantizationTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
/*
* Test that requantization of numbers ((i - zero point) * 2**s) with
* - scale = exp2(-s)
* - zero point in [0, 255]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestExactDivideByPO2(requantization_function requantize) const {
ASSERT_GE(zero_point(), 0);
ASSERT_LE(zero_point(), 255);
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
const int32_t maxI = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zero_point();
const int32_t minI = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zero_point();
for (int32_t i = 0; i < 256; i++) {
const int32_t clampedI = std::max(minI, std::min(maxI, i));
inputs[i] = int32_t(uint32_t(clampedI - zero_point()) << s());
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i < 256; i++) {
const int32_t clampedI = std::max(minI, std::min(maxI, i));
ASSERT_EQ(clampedI, outputs[i]) << "i = " << i << ", clamped i = " << clampedI <<
", min i = " << minI << ", max i = " << maxI <<
", s = " << s() << ", zero point = " << zero_point();
}
}
/*
* Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with
* - scale = exp2(-s)
* - zero point in [1, 255]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestDivideByPO2WithRoundingUp(requantization_function requantize) {
ASSERT_GE(zero_point(), 0);
ASSERT_LE(zero_point(), 255);
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
for (int32_t i = 0; i < 256; i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
(INT64_C(1) << (s() - 1)) + (int64_t) (i <= zero_point());
inputs[i] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i < 256; i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) -
(INT64_C(1) << (s() - 1)) + (int64_t) (i <= zero_point());
if (int32_t(input) == input) {
ASSERT_EQ(i, uint32_t(outputs[i])) << "i = " << i << ", input = " << input <<
", s = " << s() << ", zero point = " << zero_point();
}
}
}
/*
* Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with
* - scale = exp2(-s)
* - zero point in [1, 255]
* - no output clamping
* produces exactly i, provided that ((i - zero point) * 2**s) does not overflow.
*/
void TestDivideByPO2WithRoundingDown(requantization_function requantize) {
ASSERT_GE(zero_point(), 0);
ASSERT_LE(zero_point(), 255);
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
for (int32_t i = 0; i < 256; i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
(INT64_C(1) << (s() - 1)) - (int64_t) (i >= zero_point());
inputs[i] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (int32_t i = 0; i < 256; i++) {
const int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s()) +
(INT64_C(1) << (s() - 1)) - (int64_t) (i >= zero_point());
if (int32_t(input) == input) {
ASSERT_EQ(i, uint32_t(outputs[i])) << "i = " << i << ", input = " << input <<
", s = " << s() << ", zero point = " << zero_point();
}
}
}
void TestDivideByPO2WithRoundingAway(requantization_function requantize) {
ASSERT_GE(zero_point(), 0);
ASSERT_LE(zero_point(), 255);
/* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */
ASSERT_GE(s(), 1);
ASSERT_LT(s(), 32);
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
for (int32_t i = 0; i < 256; i++) {
int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
if (input > 0) {
input -= INT64_C(1) << (s() - 1);
} else if (input < 0) {
input += INT64_C(1) << (s() - 1);
}
inputs[i] = int32_t(input);
}
requantize(inputs.size(), inputs.data(),
scale(), zero_point(), qmin(), qmax(),
outputs.data());
for (uint32_t i = 0; i < 256; i++) {
int64_t input = RequantizationTester::ShiftLeft(i - zero_point(), s());
if (input > 0) {
input -= INT64_C(1) << (s() - 1);
} else if (input < 0) {
input += INT64_C(1) << (s() - 1);
}
if (int32_t(input) == input) {
ASSERT_EQ(i, uint32_t(outputs[i])) << "i = " << i << ", input = " << input <<
", s = " << s() << ", zero point = " << zero_point();
}
}
}
void TestSpecialCases(requantization_function requantize) {
std::vector<int32_t> inputs(256);
std::vector<uint8_t> outputs(inputs.size());
std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min());
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
requantize(
inputs.size(),
inputs.data(),
ldexpf(1.0f, -32) /* scale */,
zero_point /* zero point */,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
ASSERT_EQ(std::max(int32_t(0), zero_point - 1), *std::min_element(outputs.cbegin(), outputs.cend()));
}
std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max());
requantize(
inputs.size(),
inputs.data(),
0x1.FFFFFEp-1f /* scale */,
std::numeric_limits<uint8_t>::max() /* zero point */,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
for (size_t i = 0; i < inputs.size(); i++) {
ASSERT_EQ(std::numeric_limits<uint8_t>::max(), outputs[i]);
}
}
void TestRandomCasesPrecise(requantization_function requantize) {
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<int32_t> inputs(4096);
std::vector<uint8_t> outputs(inputs.size());
const uint8_t zero_point = UINT8_C(128);
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t approximate_output = u8rng();
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
/* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t reference_output =
scalar_requantize_precise(
inputs[i], scale, zero_point,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max());
ASSERT_EQ(uint32_t(reference_output), uint32_t(outputs[i]));
}
}
}
void TestRandomCasesApproximate(requantization_function requantize) {
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<int32_t> inputs(4096);
std::vector<uint8_t> outputs(inputs.size());
const uint8_t zero_point = UINT8_C(128);
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t approximate_output = u8rng();
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
/* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
const double reference_output =
RequantizationTester::RequantizeApproximate(
inputs[i], scale, zero_point,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max());
ASSERT_LE(fabs(reference_output - double(outputs[i])), 0.55) <<
"input = " << inputs[i] <<
", output = " << uint32_t(outputs[i]) << ", reference output = " << reference_output;
}
}
}
void TestRandomCasesAgainstReference(requantization_function requantize, requantization_function requantize_reference) {
std::random_device random_device;
std::mt19937 rng(random_device());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
std::vector<int32_t> inputs(4096);
std::vector<uint8_t> outputs(inputs.size());
std::vector<uint8_t> reference_outputs(inputs.size());
const uint8_t zero_point = UINT8_C(128);
std::uniform_real_distribution<float> scale_distribution(0x1.000000p-23f, 0x1.FFFFFEp-1f);
const float scale = scale_distribution(rng);
for (size_t i = 0; i < inputs.size(); i++) {
const uint8_t approximate_output = u8rng();
const int32_t input = int32_t(double(approximate_output) / double(scale));
inputs[i] = input;
}
requantize(
inputs.size(), inputs.data(), scale, zero_point,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
outputs.data());
requantize_reference(
inputs.size(), inputs.data(), scale, zero_point,
std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max(),
reference_outputs.data());
/* Ensure that outputs are not all identical, as in this case Test doesn't validate much */
ASSERT_NE(
*std::max_element(outputs.cbegin(), outputs.cend()),
*std::min_element(outputs.cbegin(), outputs.cend()));
for (size_t i = 0; i < inputs.size(); i++) {
ASSERT_EQ(uint32_t(reference_outputs[i]), uint32_t(outputs[i]));
}
}
}
static inline int64_t ShiftLeft(int64_t w, uint32_t n) {
return (int64_t) ((uint64_t) w << n);
}
static inline double RequantizeApproximate(
int32_t value,
float scale,
uint8_t zero_point,
uint8_t qmin,
uint8_t qmax)
{
assert(scale < 1.0f);
assert(scale >= 0x1.0p-32f);
double clamped_value = double(value) * double(scale) + double(zero_point);
const double fmin = double(qmin);
if (clamped_value < fmin) {
clamped_value = fmin;
}
const double fmax = double(qmax);
if (clamped_value > fmax) {
clamped_value = fmax;
}
return clamped_value;
}
private:
size_t zero_point_{0};
size_t s_{1};
uint8_t qmin_{std::numeric_limits<uint8_t>::min()};
uint8_t qmax_{std::numeric_limits<uint8_t>::max()};
size_t iterations_{1};
};