| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| |
| class SoftMaxOperatorTester { |
| public: |
| inline SoftMaxOperatorTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline SoftMaxOperatorTester& input_stride(size_t input_stride) { |
| assert(input_stride != 0); |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| if (this->input_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->input_stride_ >= this->channels_); |
| return this->input_stride_; |
| } |
| } |
| |
| inline SoftMaxOperatorTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return this->channels_; |
| } else { |
| assert(this->output_stride_ >= this->channels_); |
| return this->output_stride_; |
| } |
| } |
| |
| inline SoftMaxOperatorTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline SoftMaxOperatorTester& input_scale(float input_scale) { |
| assert(input_scale > 0.0f); |
| assert(std::isnormal(input_scale)); |
| this->input_scale_ = input_scale; |
| return *this; |
| } |
| |
| inline float input_scale() const { |
| return this->input_scale_; |
| } |
| |
| inline SoftMaxOperatorTester& input_zero_point(uint8_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline float output_scale() const { |
| return 1.0f / 256.0f; |
| } |
| |
| inline uint8_t output_zero_point() const { |
| return 0; |
| } |
| |
| inline SoftMaxOperatorTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void TestQU8() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<uint8_t> input((batch_size() - 1) * input_stride() + channels()); |
| std::vector<uint8_t> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| const int32_t max_input = *std::max_element( |
| input.data() + i * input_stride(), |
| input.data() + i * input_stride() + channels()); |
| float sum_exp = 0.0f; |
| for (size_t c = 0; c < channels(); c++) { |
| sum_exp += |
| std::exp((int32_t(input[i * input_stride() + c]) - max_input) * |
| input_scale()); |
| } |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[i * channels() + c] = |
| std::exp((int32_t(input[i * input_stride() + c]) - max_input) * |
| input_scale()) / |
| (sum_exp * output_scale()); |
| output_ref[i * channels() + c] = std::min(output_ref[i * channels() + c], 255.0f); |
| } |
| } |
| |
| // Create, setup, run, and destroy SoftMax operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t softmax_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_softmax_nc_qu8( |
| channels(), input_stride(), output_stride(), |
| input_scale(), |
| output_zero_point(), output_scale(), |
| 0, &softmax_op)); |
| ASSERT_NE(nullptr, softmax_op); |
| |
| // Smart pointer to automatically delete softmax_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_softmax_op(softmax_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_softmax_nc_qu8( |
| softmax_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(softmax_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); |
| } |
| } |
| } |
| } |
| |
| void TestF32() const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<float> input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output((batch_size() - 1) * output_stride() + channels()); |
| std::vector<double> output_ref(batch_size() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| const double max_input = *std::max_element( |
| input.data() + i * input_stride(), |
| input.data() + i * input_stride() + channels()); |
| double sum_exp = 0.0; |
| for (size_t c = 0; c < channels(); c++) { |
| sum_exp += std::exp(double(input[i * input_stride() + c]) - max_input); |
| } |
| for (size_t c = 0; c < channels(); c++) { |
| output_ref[i * channels() + c] = |
| std::exp(double(input[i * input_stride() + c]) - max_input) / sum_exp; |
| } |
| } |
| |
| // Create, setup, run, and destroy SoftMax operator. |
| ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); |
| xnn_operator_t softmax_op = nullptr; |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_create_softmax_nc_f32( |
| channels(), input_stride(), output_stride(), |
| 0, &softmax_op)); |
| ASSERT_NE(nullptr, softmax_op); |
| |
| // Smart pointer to automatically delete softmax_op. |
| std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_softmax_op(softmax_op, xnn_delete_operator); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_setup_softmax_nc_f32( |
| softmax_op, |
| batch_size(), |
| input.data(), output.data(), |
| nullptr /* thread pool */)); |
| |
| ASSERT_EQ(xnn_status_success, |
| xnn_run_operator(softmax_op, nullptr /* thread pool */)); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_NEAR( |
| double(output[i * output_stride() + c]), |
| output_ref[i * channels() + c], |
| output_ref[i * channels() + c] * 1.0e-4); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| size_t channels_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| float input_scale_{0.176080093}; |
| uint8_t input_zero_point_{121}; |
| size_t iterations_{15}; |
| }; |