blob: b6fe2ae05a62895ce49a62ccd442268e80439160 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack.h>
class UnpoolingOperatorTester {
public:
inline UnpoolingOperatorTester& padding(uint32_t padding) {
this->padding_top_ = padding;
this->padding_right_ = padding;
this->padding_bottom_ = padding;
this->padding_left_ = padding;
return *this;
}
inline UnpoolingOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) {
this->padding_top_ = padding_height;
this->padding_right_ = padding_width;
this->padding_bottom_ = padding_height;
this->padding_left_ = padding_width;
return *this;
}
inline UnpoolingOperatorTester& padding_height(uint32_t padding_height) {
this->padding_top_ = padding_height;
this->padding_bottom_ = padding_height;
return *this;
}
inline UnpoolingOperatorTester& padding_width(uint32_t padding_width) {
this->padding_right_ = padding_width;
this->padding_left_ = padding_width;
return *this;
}
inline UnpoolingOperatorTester& padding_top(uint32_t padding_top) {
this->padding_top_ = padding_top;
return *this;
}
inline uint32_t padding_top() const {
return this->padding_top_;
}
inline UnpoolingOperatorTester& padding_right(uint32_t padding_right) {
this->padding_right_ = padding_right;
return *this;
}
inline uint32_t padding_right() const {
return this->padding_right_;
}
inline UnpoolingOperatorTester& padding_bottom(uint32_t padding_bottom) {
this->padding_bottom_ = padding_bottom;
return *this;
}
inline uint32_t padding_bottom() const {
return this->padding_bottom_;
}
inline UnpoolingOperatorTester& padding_left(uint32_t padding_left) {
this->padding_left_ = padding_left;
return *this;
}
inline uint32_t padding_left() const {
return this->padding_left_;
}
inline UnpoolingOperatorTester& input_size(size_t input_height, size_t input_width) {
assert(input_height >= 1);
assert(input_width >= 1);
this->input_height_ = input_height;
this->input_width_ = input_width;
return *this;
}
inline UnpoolingOperatorTester& input_height(size_t input_height) {
assert(input_height >= 1);
this->input_height_ = input_height;
return *this;
}
inline size_t input_height() const {
return this->input_height_;
}
inline UnpoolingOperatorTester& input_width(size_t input_width) {
assert(input_width >= 1);
this->input_width_ = input_width;
return *this;
}
inline size_t input_width() const {
return this->input_width_;
}
inline UnpoolingOperatorTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
inline size_t channels() const {
return this->channels_;
}
inline UnpoolingOperatorTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
inline size_t batch_size() const {
return this->batch_size_;
}
inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_size) {
assert(pooling_size >= 1);
this->pooling_height_ = pooling_size;
this->pooling_width_ = pooling_size;
return *this;
}
inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) {
assert(pooling_height >= 1);
assert(pooling_width >= 1);
this->pooling_height_ = pooling_height;
this->pooling_width_ = pooling_width;
return *this;
}
inline UnpoolingOperatorTester& pooling_height(uint32_t pooling_height) {
assert(pooling_height >= 1);
this->pooling_height_ = pooling_height;
return *this;
}
inline uint32_t pooling_height() const {
return this->pooling_height_;
}
inline UnpoolingOperatorTester& pooling_width(uint32_t pooling_width) {
assert(pooling_width >= 1);
this->pooling_width_ = pooling_width;
return *this;
}
inline uint32_t pooling_width() const {
return this->pooling_width_;
}
inline size_t output_height() const {
const size_t padding_height = padding_top() + padding_bottom();
return std::max<size_t>(input_height() * pooling_height(), padding_height) - padding_height;
}
inline size_t output_width() const {
const size_t padding_width = padding_left() + padding_right();
return std::max<size_t>(input_width() * pooling_width(), padding_width) - padding_width;
}
inline UnpoolingOperatorTester& input_pixel_stride(size_t input_pixel_stride) {
assert(input_pixel_stride != 0);
this->input_pixel_stride_ = input_pixel_stride;
return *this;
}
inline size_t input_pixel_stride() const {
if (this->input_pixel_stride_ == 0) {
return channels();
} else {
assert(this->input_pixel_stride_ >= channels());
return this->input_pixel_stride_;
}
}
inline UnpoolingOperatorTester& output_pixel_stride(size_t output_pixel_stride) {
assert(output_pixel_stride != 0);
this->output_pixel_stride_ = output_pixel_stride;
return *this;
}
inline size_t output_pixel_stride() const {
if (this->output_pixel_stride_ == 0) {
return channels();
} else {
assert(this->output_pixel_stride_ >= channels());
return this->output_pixel_stride_;
}
}
inline UnpoolingOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) {
assert(next_input_height >= 1);
assert(next_input_width >= 1);
this->next_input_height_ = next_input_height;
this->next_input_width_ = next_input_width;
return *this;
}
inline UnpoolingOperatorTester& next_input_height(uint32_t next_input_height) {
assert(next_input_height >= 1);
this->next_input_height_ = next_input_height;
return *this;
}
inline uint32_t next_input_height() const {
if (this->next_input_height_ == 0) {
return input_height();
} else {
return this->next_input_height_;
}
}
inline UnpoolingOperatorTester& next_input_width(uint32_t next_input_width) {
assert(next_input_width >= 1);
this->next_input_width_ = next_input_width;
return *this;
}
inline uint32_t next_input_width() const {
if (this->next_input_width_ == 0) {
return input_width();
} else {
return this->next_input_width_;
}
}
inline size_t next_output_height() const {
const size_t padding_height = padding_top() + padding_bottom();
return std::max<size_t>(next_input_height() * pooling_height(), padding_height) - padding_height;
}
inline size_t next_output_width() const {
const size_t padding_width = padding_left() + padding_right();
return std::max<size_t>(next_input_width() * pooling_width(), padding_width) - padding_width;
}
inline UnpoolingOperatorTester& next_batch_size(size_t next_batch_size) {
assert(next_batch_size >= 1);
this->next_batch_size_ = next_batch_size;
return *this;
}
inline size_t next_batch_size() const {
if (this->next_batch_size_ == 0) {
return batch_size();
} else {
return this->next_batch_size_;
}
}
inline UnpoolingOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void TestX32() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
auto idx_rng = std::bind(std::uniform_int_distribution<uint32_t>(0, pooling_height() * pooling_width() - 1), std::ref(rng));
std::vector<uint32_t> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels());
std::vector<uint32_t> index(batch_size() * input_height() * input_width() * channels());
std::vector<uint32_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels());
std::vector<uint32_t> output_ref(batch_size() * output_height() * output_width() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u32rng));
std::generate(index.begin(), index.end(), std::ref(idx_rng));
std::generate(output.begin(), output.end(), std::ref(u32rng));
// Compute reference results.
std::fill(output_ref.begin(), output_ref.end(), 0);
for (size_t i = 0; i < batch_size(); i++) {
for (size_t iy = 0; iy < input_height(); iy++) {
for (size_t ix = 0; ix < input_width(); ix++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c];
const uint32_t py = pooling_index % pooling_height();
const uint32_t px = pooling_index / pooling_height();
const size_t oy = std::min(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1);
const size_t ox = std::min(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1);
output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] =
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c];
}
}
}
}
// Create, setup, run, and destroy Unpooling operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t unpooling_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_unpooling2d_nhwc_x32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
pooling_height(), pooling_width(),
channels(), input_pixel_stride(), output_pixel_stride(),
0, &unpooling_op));
ASSERT_NE(nullptr, unpooling_op);
// Smart pointer to automatically delete unpooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_unpooling_op(unpooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
unpooling_op,
batch_size(), input_height(), input_width(),
input.data(), index.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(unpooling_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
"in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
}
}
}
}
}
}
void TestSetupX32() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
auto idx_rng = std::bind(std::uniform_int_distribution<uint32_t>(0, pooling_height() * pooling_width() - 1), std::ref(rng));
std::vector<uint32_t> input(std::max(
(batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
(next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
std::vector<uint32_t> index(std::max(
batch_size() * input_height() * input_width() * channels(),
next_batch_size() * next_input_height() * next_input_width() * channels()));
std::vector<uint32_t> output(std::max(
(batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
(next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() * channels()));
std::vector<uint32_t> output_ref(batch_size() * output_height() * output_width() * channels());
std::vector<uint32_t> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), std::ref(u32rng));
std::generate(index.begin(), index.end(), std::ref(idx_rng));
std::generate(output.begin(), output.end(), std::ref(u32rng));
// Compute reference results.
std::fill(output_ref.begin(), output_ref.end(), 0);
for (size_t i = 0; i < batch_size(); i++) {
for (size_t iy = 0; iy < input_height(); iy++) {
for (size_t ix = 0; ix < input_width(); ix++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c];
const uint32_t py = pooling_index % pooling_height();
const uint32_t px = pooling_index / pooling_height();
const size_t oy = std::min(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1);
const size_t ox = std::min(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1);
output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] =
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c];
}
}
}
}
// Create, setup, and run Unpooling operator once.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t unpooling_op = nullptr;
ASSERT_EQ(xnn_status_success,
xnn_create_unpooling2d_nhwc_x32(
padding_top(), padding_right(), padding_bottom(), padding_left(),
pooling_height(), pooling_width(),
channels(), input_pixel_stride(), output_pixel_stride(),
0, &unpooling_op));
ASSERT_NE(nullptr, unpooling_op);
// Smart pointer to automatically delete unpooling_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_unpooling_op(unpooling_op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
unpooling_op,
batch_size(), input_height(), input_width(),
input.data(), index.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(unpooling_op, nullptr /* thread pool */));
// Verify results of the first run.
for (size_t i = 0; i < batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
for (size_t y = 0; y < output_height(); y++) {
for (size_t x = 0; x < output_width(); x++) {
EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
"in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
}
}
}
}
// Re-generate data for the second run.
std::generate(input.begin(), input.end(), std::ref(u32rng));
std::generate(index.begin(), index.end(), std::ref(idx_rng));
std::generate(output.begin(), output.end(), std::ref(u32rng));
// Compute reference results for the second run, including clamping.
std::fill(next_output_ref.begin(), next_output_ref.end(), 0);
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t iy = 0; iy < next_input_height(); iy++) {
for (size_t ix = 0; ix < next_input_width(); ix++) {
for (size_t c = 0; c < channels(); c++) {
const uint32_t pooling_index = index[((i * next_input_height() + iy) * next_input_width() + ix) * channels() + c];
const uint32_t py = pooling_index % pooling_height();
const uint32_t px = pooling_index / pooling_height();
const size_t oy = std::min(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), next_output_height() - 1);
const size_t ox = std::min(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), next_output_width() - 1);
next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] =
input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c];
}
}
}
}
// Setup and run Max Pooling operator the second time, and destroy the operator.
ASSERT_EQ(xnn_status_success,
xnn_setup_unpooling2d_nhwc_x32(
unpooling_op,
next_batch_size(), next_input_height(), next_input_width(),
input.data(), index.data(), output.data(),
nullptr /* thread pool */));
ASSERT_EQ(xnn_status_success,
xnn_run_operator(unpooling_op, nullptr /* thread pool */));
// Verify results of the second run.
for (size_t i = 0; i < next_batch_size(); i++) {
for (size_t c = 0; c < channels(); c++) {
for (size_t y = 0; y < next_output_height(); y++) {
for (size_t x = 0; x < next_output_width(); x++) {
EXPECT_EQ(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c],
output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]) <<
"in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
}
}
}
}
}
}
private:
uint32_t padding_top_{0};
uint32_t padding_right_{0};
uint32_t padding_bottom_{0};
uint32_t padding_left_{0};
size_t input_height_{1};
size_t input_width_{1};
size_t channels_{1};
size_t batch_size_{1};
size_t input_pixel_stride_{0};
size_t output_pixel_stride_{0};
uint32_t pooling_height_{1};
uint32_t pooling_width_{1};
size_t next_input_height_{0};
size_t next_input_width_{0};
size_t next_batch_size_{0};
size_t iterations_{1};
};