blob: 1911a0b08d155e3eb04b3697da89d963a554eaab [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert PIXEL_TILE >= 1
$assert PIXEL_TILE % 4 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <wasm_simd128.h>
#include <xnnpack/ibilinear.h>
void xnn_f32_ibilinear_chw_ukernel__wasmsimd_p${PIXEL_TILE}(
size_t output_pixels,
size_t channels,
const float**restrict input,
size_t input_offset,
const float*restrict weights,
float*restrict output,
size_t input_increment) XNN_DISABLE_TSAN
{
assert(output_pixels != 0);
assert(channels != 0);
assert(input_increment % sizeof(float) == 0);
do {
const float** i = input;
const float* w = weights;
size_t p = output_pixels;
$if PIXEL_TILE > 4:
for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) {
$for P in range(PIXEL_TILE):
const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 2 * ${PIXEL_TILE};
$for P in range(0, PIXEL_TILE, 4):
const v128_t vw${ABC[P:P+4]}p0 = wasm_v128_load(w + ${2 * P});
const v128_t vw${ABC[P:P+4]}p1 = wasm_v128_load(w + ${2 * P + 4});
w += 2 * ${PIXEL_TILE};
$for P in range(0, PIXEL_TILE, 2):
const v128_t vtltr${ABC[P]} = wasm_v128_load64_splat(itl${ABC[P]});
const v128_t vblbr${ABC[P]} = wasm_v128_load64_splat(ibl${ABC[P]});
const double vtltr${ABC[P+1]} = *((const double*) itl${ABC[P+1]});
const double vblbr${ABC[P+1]} = *((const double*) ibl${ABC[P+1]});
$for P in range(0, PIXEL_TILE, 4):
const v128_t valphah${ABC[P:P+4]} = wasm_v32x4_shuffle(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, 0, 2, 4, 6);
const v128_t valphav${ABC[P:P+4]} = wasm_v32x4_shuffle(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, 1, 3, 5, 7);
$for P in range(0, PIXEL_TILE, 2):
const v128_t vtltr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vtltr${ABC[P]}, 1, vtltr${ABC[P+1]});
const v128_t vblbr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vblbr${ABC[P]}, 1, vblbr${ABC[P+1]});
$for P in range(0, PIXEL_TILE, 2):
const v128_t vldrd${ABC[P:P+2]} = wasm_f32x4_sub(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]});
$for P in range(0, PIXEL_TILE, 4):
const v128_t vld${ABC[P:P+4]} = wasm_v32x4_shuffle(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, 0, 2, 4, 6);
const v128_t vrd${ABC[P:P+4]} = wasm_v32x4_shuffle(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, 1, 3, 5, 7);
$for P in range(0, PIXEL_TILE, 4):
const v128_t vtl${ABC[P:P+4]} = wasm_v32x4_shuffle(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, 0, 2, 4, 6);
const v128_t vtr${ABC[P:P+4]} = wasm_v32x4_shuffle(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, 1, 3, 5, 7);
$for P in range(0, PIXEL_TILE, 4):
const v128_t vl${ABC[P:P+4]} = wasm_f32x4_add(vtl${ABC[P:P+4]}, wasm_f32x4_mul(vld${ABC[P:P+4]}, valphav${ABC[P:P+4]}));
const v128_t vr${ABC[P:P+4]} = wasm_f32x4_add(vtr${ABC[P:P+4]}, wasm_f32x4_mul(vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]}));
$for P in range(0, PIXEL_TILE, 4):
const v128_t vd${ABC[P:P+4]} = wasm_f32x4_sub(vr${ABC[P:P+4]}, vl${ABC[P:P+4]});
$for P in range(0, PIXEL_TILE, 4):
const v128_t vo${ABC[P:P+4]} = wasm_f32x4_add(vl${ABC[P:P+4]}, wasm_f32x4_mul(vd${ABC[P:P+4]}, valphah${ABC[P:P+4]}));
$for P in range(0, PIXEL_TILE, 4):
wasm_v128_store(output + ${P}, vo${ABC[P:P+4]});
output += ${PIXEL_TILE};
}
for (; p >= 4; p -= 4) {
$for P in range(4):
const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 8;
const v128_t vw0 = wasm_v128_load(w);
const v128_t vw1 = wasm_v128_load(w + 4);
w += 8;
$for P in range(0, 4, 2):
const v128_t vtltr${ABC[P]} = wasm_v128_load64_splat(itl${P});
const v128_t vblbr${ABC[P]} = wasm_v128_load64_splat(ibl${P});
const double vtltr${ABC[P+1]} = *((const double*) itl${P+1});
const double vblbr${ABC[P+1]} = *((const double*) ibl${P+1});
const v128_t valphah = wasm_v32x4_shuffle(vw0, vw1, 0, 2, 4, 6);
const v128_t valphav = wasm_v32x4_shuffle(vw0, vw1, 1, 3, 5, 7);
$for P in range(0, 4, 2):
const v128_t vtltr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vtltr${ABC[P]}, 1, vtltr${ABC[P+1]});
const v128_t vblbr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vblbr${ABC[P]}, 1, vblbr${ABC[P+1]});
$for P in range(0, 4, 2):
const v128_t vldrd${ABC[P:P+2]} = wasm_f32x4_sub(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]});
const v128_t vld = wasm_v32x4_shuffle(vldrd01, vldrd23, 0, 2, 4, 6);
const v128_t vrd = wasm_v32x4_shuffle(vldrd01, vldrd23, 1, 3, 5, 7);
const v128_t vtl = wasm_v32x4_shuffle(vtltr01, vtltr23, 0, 2, 4, 6);
const v128_t vtr = wasm_v32x4_shuffle(vtltr01, vtltr23, 1, 3, 5, 7);
const v128_t vl = wasm_f32x4_add(vtl, wasm_f32x4_mul(vld, valphav));
const v128_t vr = wasm_f32x4_add(vtr, wasm_f32x4_mul(vrd, valphav));
const v128_t vd = wasm_f32x4_sub(vr, vl);
const v128_t vo = wasm_f32x4_add(vl, wasm_f32x4_mul(vd, valphah));
wasm_v128_store(output, vo);
output += 4;
}
if XNN_UNLIKELY(p != 0) {
if (p & 2) {
const v128_t vw = wasm_v128_load(w);
w += 4;
const v128_t valphah = wasm_v32x4_shuffle(vw, vw, 0, 2, 0, 2);
const v128_t valphav = wasm_v32x4_shuffle(vw, vw, 1, 3, 1, 3);
$for P in range(2):
const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 4;
const v128_t vtltr = wasm_f64x2_replace_lane(wasm_v128_load64_splat(itl0), 1, *((const double*) itl1));
const v128_t vblbr = wasm_f64x2_replace_lane(wasm_v128_load64_splat(ibl0), 1, *((const double*) ibl1));
const v128_t vldrd = wasm_f32x4_sub(vblbr, vtltr);
const v128_t vld = wasm_v32x4_shuffle(vldrd, vldrd, 0, 2, 0, 2);
const v128_t vrd = wasm_v32x4_shuffle(vldrd, vldrd, 1, 3, 1, 3);
const v128_t vtl = wasm_v32x4_shuffle(vtltr, vtltr, 0, 2, 0, 2);
const v128_t vtr = wasm_v32x4_shuffle(vtltr, vtltr, 1, 3, 1, 3);
const v128_t vl = wasm_f32x4_add(vtl, wasm_f32x4_mul(vld, valphav));
const v128_t vr = wasm_f32x4_add(vtr, wasm_f32x4_mul(vrd, valphav));
const v128_t vd = wasm_f32x4_sub(vr, vl);
const v128_t vo = wasm_f32x4_add(vl, wasm_f32x4_mul(vd, valphah));
*((double*) output) = wasm_f64x2_extract_lane(vo, 0);
output += 2;
}
if (p & 1) {
// We are computing the following formula:
// result = (1 - alpha_h) * (1 - alpha_v) * top_left +
// alpha_h * (1 - alpha_v) * top_right +
// (1 - alpha_h) * alpha_v * bottom_left +
// alpha_h * alpha_v * bottom_right.
//
// Rearranging gives
// result = left + alpha_h * (right - left),
// where
// left = top_left + alpha_v * (bottom_left - top_left),
// right = top_right + alpha_v * (bottom_right - top_right).
const float alphah = *w;
const v128_t valphav = wasm_v128_load32_splat(w + 1);
w += 2;
const float* itl = (const float*) ((uintptr_t) i[0] + input_offset);
const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset);
i += 2;
const v128_t vtltr = wasm_v128_load64_splat(itl);
const v128_t vblbr = wasm_v128_load64_splat(ibl);
// Compute at once
// left_diff = bottom_left - top_left
// right_diff = bottom_right - top_right
const v128_t vldrd = wasm_f32x4_sub(vblbr, vtltr);
const v128_t vlr = wasm_f32x4_add(vtltr, wasm_f32x4_mul(vldrd, valphav));
// Extract them and compute the result.
const float l = wasm_f32x4_extract_lane(vlr, 0);
const float r = wasm_f32x4_extract_lane(vlr, 1);
*output++ = l + alphah * (r - l);
}
}
input_offset += input_increment;
} while (--channels != 0);
}