| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <ostream> |
| #include <random> |
| #include <string> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #ifdef BENCHMARK_ARM_COMPUTE_LIBRARY |
| #include "arm_compute/core/Types.h" |
| #include "arm_compute/runtime/Tensor.h" |
| #include "arm_compute/runtime/CPP/CPPScheduler.h" |
| #include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h" |
| #include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h" |
| #endif // BENCHMARK_ARM_COMPUTE_LIBRARY |
| #include <benchmark/benchmark.h> |
| #include <fp16.h> |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| #include "bench/utils.h" |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| void xnnpack_convolution_qu8(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng)); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| const size_t output_pixel_stride = groups * group_output_channels; |
| const size_t input_pixel_stride = groups * group_input_channels; |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t padding_right = padding_width - padding_left; |
| const size_t padding_bottom = padding_height - padding_top; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| std::vector<uint8_t> input(batch_size * input_height * input_width * input_pixel_stride); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::vector<uint8_t> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); |
| std::vector<int32_t> bias(groups * group_output_channels); |
| std::generate(bias.begin(), bias.end(), std::ref(i32rng)); |
| const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride; |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(uint8_t) * kernel.size() + sizeof(int32_t) * bias.size() + sizeof(uint8_t) * output_elements); |
| std::vector<uint8_t> output(output_elements * num_buffers); |
| |
| std::vector<xnn_operator_t> convolution_operators(num_buffers); |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_create_convolution2d_nhwc_qu8( |
| padding_top, padding_right, padding_bottom, padding_left, |
| kernel_height, kernel_width, |
| subsampling, subsampling, |
| dilation, dilation, |
| groups, group_input_channels, group_output_channels, |
| input_pixel_stride, output_pixel_stride, |
| 127, 0.5f, |
| 127, 0.5f, |
| kernel.data(), bias.data(), |
| 127, 0.5f, 0, 255, |
| 0 /* flags */, &convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create QUINT8 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (size_t i = 0; i < convolution_operators.size(); i++) { |
| status = xnn_setup_convolution2d_nhwc_qu8( |
| convolution_operators[i], |
| batch_size, input_height, input_width, |
| input.data(), output.data() + i * output_elements, |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup QUINT8 Convolution operator"); |
| return; |
| } |
| } |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(uint8_t)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| status = xnn_run_operator(convolution_operators[buffer_index], |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run QUINT8 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_delete_operator(convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete QUINT8 Convolution operator"); |
| return; |
| } |
| convolution_op = nullptr; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["OPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| batch_size * output_height * output_width * |
| groups * group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifndef XNN_NO_QS8_OPERATORS |
| void xnnpack_convolution_qs8(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng)); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng)); |
| |
| const size_t output_pixel_stride = groups * group_output_channels; |
| const size_t input_pixel_stride = groups * group_input_channels; |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t padding_right = padding_width - padding_left; |
| const size_t padding_bottom = padding_height - padding_top; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| std::vector<int8_t> input(batch_size * input_height * input_width * input_pixel_stride); |
| std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| std::vector<int8_t> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(kernel.begin(), kernel.end(), std::ref(i8rng)); |
| std::vector<int32_t> bias(groups * group_output_channels); |
| std::generate(bias.begin(), bias.end(), std::ref(i32rng)); |
| const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride; |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(int8_t) * kernel.size() + sizeof(int32_t) * bias.size() + sizeof(int8_t) * output_elements); |
| std::vector<int8_t> output(output_elements * num_buffers); |
| |
| std::vector<xnn_operator_t> convolution_operators(num_buffers); |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_create_convolution2d_nhwc_qs8( |
| padding_top, padding_right, padding_bottom, padding_left, |
| kernel_height, kernel_width, |
| subsampling, subsampling, |
| dilation, dilation, |
| groups, group_input_channels, group_output_channels, |
| input_pixel_stride, output_pixel_stride, |
| 127, 0.5f, 0.5f, |
| kernel.data(), bias.data(), |
| 127, 0.5f, -128, 127, |
| 0 /* flags */, &convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create QINT8 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (size_t i = 0; i < convolution_operators.size(); i++) { |
| status = xnn_setup_convolution2d_nhwc_qs8( |
| convolution_operators[i], |
| batch_size, input_height, input_width, |
| input.data(), output.data() + i * output_elements, |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup QINT8 Convolution operator"); |
| return; |
| } |
| } |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(uint8_t)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| status = xnn_run_operator(convolution_operators[buffer_index], |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run QINT8 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_delete_operator(convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete QINT8 Convolution operator"); |
| return; |
| } |
| convolution_op = nullptr; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["OPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| batch_size * output_height * output_width * |
| groups * group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QS8_OPERATORS |
| |
| #ifndef XNN_NO_F16_OPERATORS |
| void xnnpack_convolution_f16(benchmark::State& state, const char* net) { |
| if (!benchmark::utils::CheckNEONFP16ARITH(state)) { |
| return; |
| } |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| const size_t output_pixel_stride = groups * group_output_channels; |
| const size_t input_pixel_stride = groups * group_input_channels; |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t padding_right = padding_width - padding_left; |
| const size_t padding_bottom = padding_height - padding_top; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| std::vector<uint16_t> input(batch_size * input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| std::vector<uint16_t> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f16rng)); |
| std::vector<uint16_t> bias(groups * group_output_channels); |
| std::generate(bias.begin(), bias.end(), std::ref(f16rng)); |
| const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride; |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(uint16_t) * (kernel.size() + bias.size() + output_elements)); |
| std::vector<uint16_t> output(output_elements * num_buffers); |
| |
| std::vector<xnn_operator_t> convolution_operators(num_buffers); |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_create_convolution2d_nhwc_f16( |
| padding_top, padding_right, padding_bottom, padding_left, |
| kernel_height, kernel_width, |
| subsampling, subsampling, |
| dilation, dilation, |
| groups, group_input_channels, group_output_channels, |
| input_pixel_stride, output_pixel_stride, |
| kernel.data(), bias.data(), |
| -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), |
| 0 /* flags */, &convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create FP16 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (size_t i = 0; i < convolution_operators.size(); i++) { |
| status = xnn_setup_convolution2d_nhwc_f16( |
| convolution_operators[i], |
| batch_size, input_height, input_width, |
| input.data(), output.data() + i * output_elements, |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup FP16 Convolution operator"); |
| return; |
| } |
| } |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(uint16_t)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| status = xnn_run_operator(convolution_operators[buffer_index], nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run FP16 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_delete_operator(convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete FP16 Convolution operator"); |
| return; |
| } |
| convolution_op = nullptr; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| batch_size * output_height * output_width * |
| groups * group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_F16_OPERATORS |
| |
| void xnnpack_convolution_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
| |
| const size_t output_pixel_stride = groups * group_output_channels; |
| const size_t input_pixel_stride = groups * group_input_channels; |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t padding_right = padding_width - padding_left; |
| const size_t padding_bottom = padding_height - padding_top; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| std::vector<float> input(batch_size * input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| std::vector<float> bias(groups * group_output_channels); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride; |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(float) * (kernel.size() + bias.size() + output_elements)); |
| std::vector<float> output(output_elements * num_buffers); |
| |
| std::vector<xnn_operator_t> convolution_operators(num_buffers); |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_create_convolution2d_nhwc_f32( |
| padding_top, padding_right, padding_bottom, padding_left, |
| kernel_height, kernel_width, |
| subsampling, subsampling, |
| dilation, dilation, |
| groups, group_input_channels, group_output_channels, |
| input_pixel_stride, output_pixel_stride, |
| kernel.data(), bias.data(), |
| -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), |
| 0 /* flags */, &convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create FP32 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (size_t i = 0; i < convolution_operators.size(); i++) { |
| status = xnn_setup_convolution2d_nhwc_f32( |
| convolution_operators[i], |
| batch_size, input_height, input_width, |
| input.data(), output.data() + i * output_elements, |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup FP32 Convolution operator"); |
| return; |
| } |
| } |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| status = xnn_run_operator(convolution_operators[buffer_index], nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run FP32 Convolution operator"); |
| return; |
| } |
| } |
| |
| for (xnn_operator_t& convolution_op : convolution_operators) { |
| status = xnn_delete_operator(convolution_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete FP32 Convolution operator"); |
| return; |
| } |
| convolution_op = nullptr; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| batch_size * output_height * output_width * |
| groups * group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| void tflite_convolution_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| bool is_depthwise = false; |
| if (groups != 1) { |
| if (group_input_channels == 1) { |
| is_depthwise = true; |
| } else { |
| state.SkipWithError("grouped convolution is not supported"); |
| return; |
| } |
| } |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
| |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| |
| tflite::Padding padding = tflite::Padding_VALID; |
| if (padding_width == (effective_kernel_width - 1) && padding_height == (effective_kernel_height - 1)) { |
| padding = tflite::Padding_SAME; |
| } else if (padding_width == 0 && padding_height == 0) { |
| padding = tflite::Padding_VALID; |
| } else { |
| state.SkipWithError("unsupported padding"); |
| return; |
| } |
| |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| std::vector<float> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| std::vector<float> bias(groups * group_output_channels); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode( |
| builder, |
| is_depthwise ? tflite::BuiltinOperator_DEPTHWISE_CONV_2D : tflite::BuiltinOperator_CONV_2D, |
| 0); |
| |
| flatbuffers::Offset<tflite::Conv2DOptions> conv2d_options = CreateConv2DOptions( |
| builder, |
| padding, |
| static_cast<int32_t>(subsampling), static_cast<int32_t>(subsampling), |
| tflite::ActivationFunctionType_NONE, |
| static_cast<int32_t>(dilation), static_cast<int32_t>(dilation)); |
| |
| flatbuffers::Offset<tflite::DepthwiseConv2DOptions> dwconv2d_options = CreateDepthwiseConv2DOptions( |
| builder, |
| padding, |
| static_cast<int32_t>(subsampling), static_cast<int32_t>(subsampling), |
| static_cast<int32_t>(group_output_channels), |
| tflite::ActivationFunctionType_NONE, |
| static_cast<int32_t>(dilation), static_cast<int32_t>(dilation)); |
| |
| flatbuffers::Offset<tflite::Buffer> buffers[3] = { |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| tflite::CreateBuffer(builder, builder.CreateVector( |
| reinterpret_cast<const uint8_t*>(kernel.data()), |
| sizeof(float) * kernel.size())), |
| tflite::CreateBuffer(builder, builder.CreateVector( |
| reinterpret_cast<const uint8_t*>(bias.data()), |
| sizeof(float) * bias.size())), |
| }; |
| |
| const int32_t input_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(input_height), |
| static_cast<int32_t>(input_width), |
| static_cast<int32_t>(groups * group_input_channels) |
| }; |
| const int32_t output_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(output_height), |
| static_cast<int32_t>(output_width), |
| static_cast<int32_t>(groups * group_output_channels) |
| }; |
| const int32_t filter_shape[4] = { |
| static_cast<int32_t>(group_output_channels), |
| static_cast<int32_t>(kernel_height), |
| static_cast<int32_t>(kernel_width), |
| static_cast<int32_t>(groups * group_input_channels) |
| }; |
| const int32_t bias_shape[1] = { |
| static_cast<int32_t>(groups * group_output_channels) |
| }; |
| |
| flatbuffers::Offset<tflite::Tensor> tensors[4] = { |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(input_shape, 4), |
| tflite::TensorType_FLOAT32, |
| 0 /* buffer id */, |
| builder.CreateString("input")), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(filter_shape, 4), |
| tflite::TensorType_FLOAT32, |
| 1 /* buffer id */, |
| builder.CreateString("filter")), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(bias_shape, 1), |
| tflite::TensorType_FLOAT32, |
| 2 /* buffer id */, |
| builder.CreateString("bias")), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(output_shape, 4), |
| tflite::TensorType_FLOAT32, |
| 0 /* buffer id */, |
| builder.CreateString("output")), |
| }; |
| |
| const int32_t op_inputs[3] = { 0, 1, 2 }; |
| const int32_t op_outputs[1] = { 3 }; |
| flatbuffers::Offset<tflite::Operator> op = CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs, 3), |
| builder.CreateVector<int32_t>(op_outputs, 1), |
| is_depthwise ? tflite::BuiltinOptions_DepthwiseConv2DOptions : tflite::BuiltinOptions_Conv2DOptions, |
| is_depthwise ? dwconv2d_options.Union() : conv2d_options.Union(), |
| /*custom_options */ 0, |
| tflite::CustomOptionsFormat_FLEXBUFFERS); |
| |
| const int32_t graph_inputs[1] = { 0 }; |
| const int32_t graph_outputs[1] = { 3 }; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors, 4), |
| builder.CreateVector<int32_t>(graph_inputs, 1), |
| builder.CreateVector<int32_t>(graph_outputs, 1), |
| builder.CreateVector(&op, 1), |
| builder.CreateString("Conv2D subgraph")); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Conv2D model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers, 3)); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolver resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| if (interpreter == nullptr) { |
| state.SkipWithError("TFLite interpreter is null"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size * groups * group_input_channels * input_height * input_width, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::WipeCache(); |
| benchmark::utils::PrefetchToL1( |
| interpreter->typed_tensor<float>(0), |
| batch_size * groups * group_input_channels * input_height * input_width * sizeof(float)); |
| state.ResumeTiming(); |
| |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| batch_size * output_height * output_width * |
| groups * group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifdef BENCHMARK_ARM_COMPUTE_LIBRARY |
| static std::string compare_with_convolution_f32_reference_output( |
| const benchmark::State& state, const float* input, size_t input_size, |
| const float* kernel, size_t kernel_size, const float* bias, size_t bias_size, |
| const float* output, size_t output_size) |
| { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| const size_t input_pixel_stride = groups * group_input_channels; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| |
| assert(input_size == batch_size * input_height * input_width * groups * group_input_channels); |
| |
| assert(kernel_size == group_output_channels * kernel_height * kernel_width * groups * group_input_channels); |
| |
| assert(bias_size == groups * group_output_channels); |
| |
| assert(output_size == batch_size * output_height * output_width * groups * group_output_channels); |
| |
| std::vector<float> output_ref(output_size); |
| for (size_t i = 0; i < batch_size; i++) { |
| for (size_t oy = 0; oy < output_height; oy++) { |
| for (size_t ox = 0; ox < output_width; ox++) { |
| for (size_t g = 0; g < groups; g++) { |
| for (size_t oc = 0; oc < group_output_channels; oc++) { |
| output_ref[(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] = |
| bias[g * group_output_channels + oc]; |
| } |
| } |
| } |
| } |
| } |
| for (size_t i = 0; i < batch_size; i++) { |
| for (size_t oy = 0; oy < output_height; oy++) { |
| for (size_t ox = 0; ox < output_width; ox++) { |
| for (size_t ky = 0; ky < kernel_height; ky++) { |
| const size_t iy = oy * subsampling + ky * dilation - padding_top; |
| if (iy < input_height) { |
| for (size_t kx = 0; kx < kernel_width; kx++) { |
| const size_t ix = ox * subsampling + kx * dilation - padding_left; |
| if (ix < input_width) { |
| for (size_t g = 0; g < groups; g++) { |
| for (size_t oc = 0; oc < group_output_channels; oc++) { |
| for (size_t ic = 0; ic < group_input_channels; ic++) { |
| output_ref[(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] += |
| input[((i * input_height + iy) * input_width + ix) * input_pixel_stride + g * group_input_channels + ic] * |
| kernel[(((oc * kernel_height + ky) * kernel_width + kx) * groups + g) * group_input_channels + ic]; |
| } // group_input_channels loop |
| } // group_output_channels loop |
| } // groups loop |
| } |
| } // kernel_width loop |
| } |
| } // kernel_height loop |
| } // output_width loop |
| } // output_height loop |
| } // batch_size loop |
| |
| const float relative_error_tolerance = 1e-4; |
| for (size_t i = 0; i < batch_size; i++) { |
| for (size_t y = 0; y < output_height; y++) { |
| for (size_t x = 0; x < output_width; x++) { |
| for (size_t g = 0; g < groups; g++) { |
| for (size_t c = 0; c < group_output_channels; c++) { |
| const size_t idx = (((i * output_height + y) * output_width + x) * groups + g) * group_output_channels + c; |
| const float value_ref = output_ref[idx]; |
| const float value = output[idx]; |
| if (std::abs(value - value_ref) > std::max(std::abs(value_ref) * relative_error_tolerance, std::numeric_limits<float>::epsilon())) { |
| std::ostringstream error_stream; |
| error_stream << "(x, y) = (" << x << ", " << y << "), group = " << g |
| << ", channel = " << c << ", refValue = " << value_ref |
| << ", actualValue = " << value |
| << ", absDiff=" << std::abs(value - value_ref); |
| return error_stream.str(); |
| } |
| } |
| } |
| } |
| } |
| } |
| return ""; |
| } |
| |
| void armcl_convolution_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t kernel_height = state.range(3); |
| const size_t kernel_width = state.range(4); |
| const size_t padding_height = state.range(5); |
| const size_t padding_width = state.range(6); |
| const size_t subsampling = state.range(7); |
| const size_t dilation = state.range(8); |
| const size_t groups = state.range(9); |
| const size_t group_input_channels = state.range(10); |
| const size_t group_output_channels = state.range(11); |
| |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t padding_right = padding_width - padding_left; |
| const size_t padding_bottom = padding_height - padding_top; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| arm_compute::PadStrideInfo pad_stride_info( |
| subsampling /* stride height */, |
| subsampling /* stride width */, |
| padding_left, padding_right, padding_top, padding_bottom, |
| arm_compute::DimensionRoundingType::FLOOR); |
| arm_compute::Size2D dilation_info(dilation, dilation); |
| // Note: activation is disabled by default. |
| arm_compute::ActivationLayerInfo activation_info; |
| |
| // Note: no batch size and reverse order of dimensions, i.e. CWHN for NHWC. |
| arm_compute::TensorShape input_shape( |
| /* C */ groups * group_input_channels, |
| /* W */ input_width, |
| /* H */ input_height, |
| /* N */ batch_size); |
| arm_compute::TensorInfo input_info( |
| input_shape, |
| 1 /* number of channels per element (!) */, |
| arm_compute::DataType::F32); |
| input_info.set_data_layout(arm_compute::DataLayout::NHWC); |
| arm_compute::Tensor input_tensor; |
| input_tensor.allocator()->init(input_info); |
| input_tensor.allocator()->allocate(); |
| |
| // Note: reverse order of dimensions, i.e. for IWHO for OHWI. |
| arm_compute::TensorShape kernel_shape( |
| /* I */ groups * group_input_channels, |
| /* W */ kernel_width, |
| /* H */ kernel_height, |
| /* O */ group_output_channels); |
| arm_compute::TensorInfo kernel_info( |
| kernel_shape, |
| 1 /* number of channels per element (!) */, |
| arm_compute::DataType::F32); |
| kernel_info.set_data_layout(arm_compute::DataLayout::NHWC); |
| arm_compute::Tensor kernelTensor; |
| kernelTensor.allocator()->init(kernel_info); |
| kernelTensor.allocator()->allocate(); |
| |
| arm_compute::TensorShape bias_shape(groups * group_output_channels); |
| arm_compute::TensorInfo bias_info( |
| bias_shape, |
| 1 /* number of channels per element (!) */, |
| arm_compute::DataType::F32); |
| bias_info.set_data_layout(arm_compute::DataLayout::NHWC); |
| arm_compute::Tensor bias_tensor; |
| bias_tensor.allocator()->init(bias_info); |
| bias_tensor.allocator()->allocate(); |
| |
| // Note: no batch size and reverse order of dimensions, i.e. CWHN for NHWC. |
| arm_compute::TensorShape output_shape( |
| /* C */ groups * group_output_channels, |
| /* W */ output_width, |
| /* H */ output_height, |
| /* N */ batch_size); |
| arm_compute::TensorInfo output_info( |
| output_shape, |
| 1 /* number of channels per element (!) */, |
| arm_compute::DataType::F32); |
| output_info.set_data_layout(arm_compute::DataLayout::NHWC); |
| arm_compute::Tensor output_tensor; |
| output_tensor.allocator()->init(output_info); |
| output_tensor.allocator()->allocate(); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
| |
| std::generate( |
| reinterpret_cast<float*>(input_tensor.buffer()), |
| reinterpret_cast<float*>(input_tensor.buffer()) + input_shape.total_size(), |
| std::ref(f32rng)); |
| std::generate( |
| reinterpret_cast<float*>(kernelTensor.buffer()), |
| reinterpret_cast<float*>(kernelTensor.buffer()) + kernel_shape.total_size(), |
| std::ref(f32rng)); |
| std::generate( |
| reinterpret_cast<float*>(bias_tensor.buffer()), |
| reinterpret_cast<float*>(bias_tensor.buffer()) + bias_shape.total_size(), |
| std::ref(f32rng)); |
| std::generate( |
| reinterpret_cast<float*>(output_tensor.buffer()), |
| reinterpret_cast<float*>(output_tensor.buffer()) + output_shape.total_size(), |
| std::ref(f32rng)); |
| |
| bool is_depthwise = false; |
| if (groups != 1) { |
| // NEConvolutionLayer uses NEGEMMConvolutionLayer by default, which doesn't support grouped convolution. |
| // However, depthwise convolution is supported via NEDepthwiseConvolutionLayer. |
| if (group_input_channels == 1) { |
| is_depthwise = true; |
| } else { |
| state.SkipWithError("grouped convolution is not supported"); |
| return; |
| } |
| } |
| |
| std::shared_ptr<arm_compute::IFunction> layer; |
| if (is_depthwise) { |
| if (dilation != 1) { |
| state.SkipWithError("dilated depthwise convolution is not supported"); |
| return; |
| } |
| |
| // Avoid NEDepthwiseConvolutionLayer3x3 when stride isn't 2 in order to pass the output verification. |
| // TODO(b/130206370) This looks like a bug and needs further investigation. |
| if (kernel_height == 3 && kernel_width == 3 && subsampling == 2) { |
| auto* depthwise_3x3_convolution_layer = new arm_compute::NEDepthwiseConvolutionLayer3x3(); |
| layer.reset(depthwise_3x3_convolution_layer); |
| depthwise_3x3_convolution_layer->configure( |
| &input_tensor, &kernelTensor, &bias_tensor, &output_tensor, |
| pad_stride_info, group_output_channels, activation_info); |
| |
| if (!depthwise_3x3_convolution_layer->validate( |
| &input_info, &kernel_info, &bias_info, &output_info, |
| pad_stride_info, group_output_channels, activation_info)) |
| { |
| state.SkipWithError("validation failed"); |
| return; |
| } |
| } else { |
| auto* depthwise_convolution_layer = new arm_compute::NEDepthwiseConvolutionLayer(); |
| layer.reset(depthwise_convolution_layer); |
| depthwise_convolution_layer->configure( |
| &input_tensor, &kernelTensor, &bias_tensor, &output_tensor, |
| pad_stride_info, group_output_channels, activation_info); |
| |
| if (!depthwise_convolution_layer->validate( |
| &input_info, &kernel_info, &bias_info, &output_info, |
| pad_stride_info, group_output_channels, activation_info)) |
| { |
| state.SkipWithError("validation failed"); |
| return; |
| } |
| } |
| } else { |
| auto* convolution_layer = new arm_compute::NEConvolutionLayer(); |
| layer.reset(convolution_layer); |
| convolution_layer->configure( |
| &input_tensor, &kernelTensor, &bias_tensor, &output_tensor, |
| pad_stride_info, arm_compute::WeightsInfo(), dilation_info, activation_info, |
| true /* enable fast math */, groups); |
| |
| if (!convolution_layer->validate( |
| &input_info, &kernel_info, &bias_info, &output_info, |
| pad_stride_info, arm_compute::WeightsInfo(), dilation_info, activation_info, |
| true /* enable fast math */, groups)) |
| { |
| state.SkipWithError("validation failed"); |
| return; |
| } |
| } |
| |
| // Dry run to let ACL do one-time initializations. |
| arm_compute::CPPScheduler::get().set_num_threads(1); |
| layer->run(); |
| |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::WipeCache(); |
| benchmark::utils::PrefetchToL1( |
| input_tensor.buffer(), |
| batch_size * groups * group_input_channels * input_height * input_width * sizeof(float)); |
| state.ResumeTiming(); |
| |
| layer->run(); |
| } |
| |
| // Validate outputs. |
| const std::string error_string = compare_with_convolution_f32_reference_output( |
| state, reinterpret_cast<const float*>(input_tensor.buffer()), |
| input_shape.total_size(), |
| reinterpret_cast<const float*>(kernelTensor.buffer()), |
| kernel_shape.total_size(), |
| reinterpret_cast<const float*>(bias_tensor.buffer()), |
| bias_shape.total_size(), |
| reinterpret_cast<const float*>(output_tensor.buffer()), |
| output_shape.total_size()); |
| |
| if (!error_string.empty()) { |
| state.SkipWithError(("validation failed: " + error_string).c_str()); |
| return; |
| } |
| |
| input_tensor.allocator()->free(); |
| kernelTensor.allocator()->free(); |
| bias_tensor.allocator()->free(); |
| output_tensor.allocator()->free(); |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| batch_size * output_height * output_width * |
| groups * group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| #endif // BENCHMARK_ARM_COMPUTE_LIBRARY |
| |
| // ShuffleNet v1 with 1 group. |
| static void ShuffleNetV1G1(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /******************* Stage 2: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 36}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 36, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 36, 120}); |
| /******************* Stage 2: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 144, 36}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 36, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 36, 144}); |
| /******************* Stage 3: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 144, 72}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 72, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 72, 144}); |
| /******************* Stage 3: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 288, 72}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 72, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 72, 288}); |
| /******************* Stage 4: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 288, 144}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 144, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 144, 288}); |
| /******************* Stage 4: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 576, 144}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 2, 1, 144, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 144, 576}); |
| } |
| |
| // ShuffleNet v1 with 2 groups. |
| static void ShuffleNetV1G2(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /******************* Stage 2: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 50}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 50, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 2, 25, 88}); |
| /******************* Stage 2: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 2, 100, 25}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 50, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 2, 25, 100}); |
| /******************* Stage 3: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 2, 100, 50}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 100, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 2, 50, 100}); |
| /******************* Stage 3: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 2, 200, 50}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 100, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 2, 50, 200}); |
| /******************* Stage 4: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 2, 200, 100}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 200, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 2, 100, 200}); |
| /******************* Stage 4: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 2, 400, 100}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 2, 1, 200, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 2, 100, 400}); |
| } |
| |
| // ShuffleNet v1 with 3 groups. |
| static void ShuffleNetV1G3(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /******************* Stage 2: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 60}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 60, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 3, 20, 72}); |
| /******************* Stage 2: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 3, 80, 20}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 60, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 3, 20, 80}); |
| /******************* Stage 3: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 3, 80, 40}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 120, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 3, 40, 80}); |
| /******************* Stage 3: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 3, 160, 40}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 120, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 3, 40, 160}); |
| /******************* Stage 4: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 3, 160, 80}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 240, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 3, 80, 160}); |
| /******************* Stage 4: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 3, 320, 80}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 2, 1, 240, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 3, 80, 320}); |
| } |
| |
| // ShuffleNet v1 with 4 groups. |
| static void ShuffleNetV1G4(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /******************* Stage 2: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 68}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 68, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 4, 17, 62}); |
| /******************* Stage 2: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 4, 68, 17}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 68, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 4, 17, 68}); |
| /******************* Stage 3: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 4, 68, 34}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 136, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 4, 34, 68}); |
| /******************* Stage 3: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 4, 136, 34}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 136, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 4, 34, 136}); |
| /******************* Stage 4: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 4, 136, 68}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 272, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 4, 68, 136}); |
| /******************* Stage 4: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 4, 272, 68}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 2, 1, 272, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 4, 68, 272}); |
| } |
| |
| // ShuffleNet v1 with 8 groups. |
| static void ShuffleNetV1G8(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /******************* Stage 2: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 96}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 96, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 8, 12, 45}); |
| /******************* Stage 2: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 8, 48, 12}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 96, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 8, 12, 48}); |
| /******************* Stage 3: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 8, 48, 24}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 192, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 8, 24, 48}); |
| /******************* Stage 3: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 8, 96, 24}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 192, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 8, 24, 96}); |
| /******************* Stage 4: stride-2 unit ******************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 8, 96, 48}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 384, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 8, 48, 96}); |
| /******************* Stage 4: stride-1 units *****************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 8, 192, 48}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 2, 1, 384, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 8, 48, 192}); |
| } |
| |
| // ShuffleNet v2 (0.5X scale) |
| static void ShuffleNetV2X05(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /************************** Stage 2 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 24, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 24, 24}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 24}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 24, 1, 1}); |
| /************************** Stage 3 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 48, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 48, 48}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 48, 48}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 48, 1, 1}); |
| /************************** Stage 4 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 96, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 96, 96}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 96, 96}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 96, 1, 1}); |
| /*************************** Conv 5 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 192, 1024}); |
| } |
| |
| // ShuffleNet v2 (1.0X scale) |
| static void ShuffleNetV2X10(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /************************** Stage 2 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 24, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 24, 58}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 58}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 58, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 58, 58}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 58, 1, 1}); |
| /************************** Stage 3 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 116, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 116, 116}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 116, 116}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 116, 1, 1}); |
| /************************** Stage 4 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 232, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 232, 232}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 232, 232}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 232, 1, 1}); |
| /*************************** Conv 5 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 464, 1024}); |
| } |
| |
| // ShuffleNet v2 (1.5X scale) |
| static void ShuffleNetV2X15(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /************************** Stage 2 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 24, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 24, 88}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 88}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 88, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 88, 88}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 88, 1, 1}); |
| /************************** Stage 3 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 176, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 176, 176}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 176, 176}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 176, 1, 1}); |
| /************************** Stage 4 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 352, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 352, 352}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 352, 352}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 352, 1, 1}); |
| /*************************** Conv 5 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 704, 1024}); |
| } |
| |
| // ShuffleNet v2 (2.0X scale) |
| static void ShuffleNetV2X20(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*************************** Conv 1 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 24}); |
| /************************** Stage 2 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 24, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 24, 122}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 122}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 122, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 122, 122}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 122, 1, 1}); |
| /************************** Stage 3 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 244, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 244, 244}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 244, 244}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 244, 1, 1}); |
| /************************** Stage 4 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 488, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 488, 488}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 488, 488}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 488, 1, 1}); |
| /*************************** Conv 5 **************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 976, 2048}); |
| } |
| |
| static void MobileNetV1(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 32}); |
| b->Args({1, 112, 112, 3, 3, 2, 2, 1, 1, 32, 1, 1}); |
| b->Args({1, 112, 112, 1, 1, 0, 0, 1, 1, 1, 32, 64}); |
| b->Args({1, 112, 112, 3, 3, 2, 2, 2, 1, 64, 1, 1}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 64, 128}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 128, 1, 1}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 128, 128}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 128, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 128, 256}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 256, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 256, 256}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 256, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 256, 512}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 512, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 512, 512}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 512, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 512, 1024}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 1024, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 1024, 1024}); |
| } |
| |
| static void MobileNetV2(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 32}); |
| |
| /************************ Bottleneck 1 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 3, 3, 2, 2, 1, 1, 32, 1, 1}); |
| b->Args({1, 112, 112, 1, 1, 0, 0, 1, 1, 1, 32, 16}); |
| |
| /************************ Bottleneck 2 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 1, 1, 0, 0, 1, 1, 1, 16, 96}); |
| b->Args({1, 112, 112, 3, 3, 2, 2, 2, 1, 96, 1, 1}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 96, 24}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 144}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 144, 1, 1}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 144, 24}); |
| |
| /************************ Bottleneck 3 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 144}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 144, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 144, 32}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 32, 192}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 192, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 192, 32}); |
| //b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 32, 192}); |
| //b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 192, 1, 1}); |
| //b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 192, 32}); |
| |
| /************************ Bottleneck 4 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 32, 192}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 192, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 192, 64}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 64, 384}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 384, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 384, 64}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 64, 384}); |
| //b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 384, 1, 1}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 384, 64}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 64, 384}); |
| //b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 384, 1, 1}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 384, 64}); |
| |
| /************************ Bottleneck 5 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 64, 384}); |
| //b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 384, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 384, 96}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 96, 576}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 576, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 576, 96}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 96, 576}); |
| //b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 576, 1, 1}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 576, 96}); |
| |
| /************************ Bottleneck 6 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 96, 576}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 576, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 576, 160}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 160, 960}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 960, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 960, 160}); |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 160, 960}); |
| //b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 960, 1, 1}); |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 960, 160}); |
| |
| /************************ Bottleneck 7 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 160, 960}); |
| //b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 960, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 960, 320}); |
| |
| /******************** Pre-pooling Conv2D *********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 320, 1280}); |
| /******************** Post-pooling Conv2D ********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1280, 1000}); |
| } |
| |
| static void MobileNetV3Small(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*********************** Initial Stage ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 16}); |
| /*********************** Bottleneck 1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 3, 3, 2, 2, 2, 1, 16, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 16, 8}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 8, 16}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 16, 16}); |
| /*********************** Bottleneck 2 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 16, 72}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 72, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 72, 24}); |
| /*********************** Bottleneck 3 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 24, 88}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 88, 1, 1}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 88, 24}); |
| /*********************** Bottleneck 4 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 24, 96}); |
| b->Args({1, 28, 28, 5, 5, 4, 4, 2, 1, 96, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 96, 24}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 24, 96}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 96, 40}); |
| /*********************** Bottleneck 5 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 40, 240}); |
| b->Args({1, 14, 14, 5, 5, 4, 4, 1, 1, 240, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 240, 64}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 64, 240}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 240, 40}); |
| /*********************** Bottleneck 6 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 40, 240}); |
| //b->Args({1, 14, 14, 5, 5, 4, 4, 1, 1, 240, 1, 1}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 240, 64}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 64, 240}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 240, 40}); |
| /*********************** Bottleneck 7 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 40, 120}); |
| b->Args({1, 14, 14, 5, 5, 4, 4, 1, 1, 120, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 120, 32}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 32, 120}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 120, 48}); |
| /*********************** Bottleneck 8 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 48, 144}); |
| b->Args({1, 14, 14, 5, 5, 4, 4, 1, 1, 144, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 144, 40}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 40, 144}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 144, 48}); |
| /*********************** Bottleneck 9 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 48, 288}); |
| b->Args({1, 14, 14, 5, 5, 4, 4, 2, 1, 288, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 288, 72}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 72, 288}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 288, 96}); |
| /*********************** Bottleneck 10 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 96, 576}); |
| b->Args({1, 7, 7, 5, 5, 4, 4, 1, 1, 576, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 576, 144}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 144, 576}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 576, 96}); |
| /*********************** Bottleneck 11 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 96, 576}); |
| //b->Args({1, 7, 7, 5, 5, 4, 4, 1, 1, 576, 1, 1}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 576, 144}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 144, 576}); |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 576, 96}); |
| /************************ Last Stage ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 96, 576}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 576, 1024}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1024, 1001}); |
| } |
| |
| static void MobileNetV3Large(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /*********************** Initial Stage ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 16}); |
| /*********************** Bottleneck 1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 3, 3, 2, 2, 1, 1, 16, 1, 1}); |
| b->Args({1, 112, 112, 1, 1, 0, 0, 1, 1, 1, 16, 16}); |
| /*********************** Bottleneck 2 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 1, 1, 0, 0, 1, 1, 1, 16, 64}); |
| b->Args({1, 112, 112, 3, 3, 2, 2, 2, 1, 64, 1, 1}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 64, 24}); |
| /*********************** Bottleneck 3 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 72}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 72, 1, 1}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 72, 24}); |
| /*********************** Bottleneck 4 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 24, 72}); |
| b->Args({1, 56, 56, 5, 5, 4, 4, 2, 1, 72, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 72, 24}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 24, 72}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 72, 40}); |
| /*********************** Bottleneck 5 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 40, 120}); |
| b->Args({1, 28, 28, 5, 5, 4, 4, 1, 1, 120, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 120, 32}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 32, 120}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 120, 40}); |
| /*********************** Bottleneck 6 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 40, 120}); |
| //b->Args({1, 28, 28, 5, 5, 4, 4, 1, 1, 120, 1, 1}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 120, 32}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 32, 120}); |
| //b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 120, 40}); |
| /*********************** Bottleneck 7 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 40, 240}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 240, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 240, 80}); |
| /*********************** Bottleneck 8 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 80, 200}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 200, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 200, 80}); |
| /*********************** Bottleneck 9 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 80, 184}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 184, 1, 1}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 184, 80}); |
| /********************** Bottleneck 10 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 80, 184}); |
| //b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 184, 1, 1}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 184, 80}); |
| /********************** Bottleneck 11 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 80, 480}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 480, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 480, 120}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 120, 480}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 480, 112}); |
| /********************** Bottleneck 12 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 112, 672}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 672, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 672, 168}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 168, 672}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 672, 112}); |
| /********************** Bottleneck 13 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 112, 672}); |
| b->Args({1, 14, 14, 5, 5, 4, 4, 2, 1, 672, 1, 1}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 672, 160}); |
| /********************** Bottleneck 14 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 160, 960}); |
| b->Args({1, 7, 7, 5, 5, 4, 4, 1, 1, 960, 1, 1}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 960, 240}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 240, 960}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 960, 160}); |
| /********************** Bottleneck 15 ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 160, 960}); |
| //b->Args({1, 7, 7, 5, 5, 4, 4, 1, 1, 960, 1, 1}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 960, 240}); |
| //b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 240, 960}); |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 960, 160}); |
| /************************ Last Stage ***********************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 160, 960}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 960, 1280}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1280, 1001}); |
| } |
| |
| // SqueezeNet 1.0 |
| static void SqueezeNetV10(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /************************** Conv 1 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 7, 7, 6, 6, 2, 1, 1, 3, 96}); |
| /************************** Fire 2 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 96, 16}); |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 16, 64}); |
| b->Args({1, 55, 55, 3, 3, 2, 2, 1, 1, 1, 16, 64}); |
| /************************** Fire 3 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 55, 1, 1, 0, 0, 1, 1, 1, 128, 16}); |
| //b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 16, 64}); |
| //b->Args({1, 55, 55, 3, 3, 2, 2, 1, 1, 1, 16, 64}); |
| /************************** Fire 4 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 128, 32}); |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 32, 128}); |
| b->Args({1, 55, 55, 3, 3, 2, 2, 1, 1, 1, 32, 128}); |
| /************************** Fire 5 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 256, 32}); |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 32, 128}); |
| b->Args({1, 27, 27, 3, 3, 2, 2, 1, 1, 1, 32, 128}); |
| /************************** Fire 6 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 256, 48}); |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 48, 192}); |
| b->Args({1, 27, 27, 3, 3, 2, 2, 1, 1, 1, 48, 192}); |
| /************************** Fire 7 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 384, 48}); |
| //b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 48, 192}); |
| //b->Args({1, 27, 27, 3, 3, 2, 2, 1, 1, 1, 48, 192}); |
| /************************** Fire 8 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 384, 64}); |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| b->Args({1, 27, 27, 3, 3, 2, 2, 1, 1, 1, 64, 256}); |
| /************************** Fire 9 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 512, 64}); |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| b->Args({1, 13, 13, 3, 3, 2, 2, 1, 1, 1, 64, 256}); |
| /************************* Conv 10 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 512, 1000}); |
| } |
| |
| // SqueezeNet 1.1 |
| static void SqueezeNetV11(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /************************** Conv 1 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 2, 1, 1, 3, 64}); |
| /************************** Fire 2 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 64, 16}); |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 16, 64}); |
| b->Args({1, 55, 55, 3, 3, 2, 2, 1, 1, 1, 16, 64}); |
| /************************** Fire 3 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 128, 16}); |
| //b->Args({1, 55, 55, 1, 1, 0, 0, 1, 1, 1, 16, 64}); |
| //b->Args({1, 55, 55, 3, 3, 2, 2, 1, 1, 1, 16, 64}); |
| /************************** Fire 4 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 128, 32}); |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 32, 128}); |
| b->Args({1, 27, 27, 3, 3, 2, 2, 1, 1, 1, 32, 128}); |
| /************************** Fire 5 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 256, 32}); |
| //b->Args({1, 27, 27, 1, 1, 0, 0, 1, 1, 1, 32, 128}); |
| //b->Args({1, 27, 27, 3, 3, 2, 2, 1, 1, 1, 32, 128}); |
| /************************** Fire 6 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 256, 48}); |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 48, 192}); |
| b->Args({1, 13, 13, 3, 3, 2, 2, 1, 1, 1, 48, 192}); |
| /************************** Fire 7 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 384, 48}); |
| //b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 48, 192}); |
| //b->Args({1, 13, 13, 3, 3, 2, 2, 1, 1, 1, 48, 192}); |
| /************************** Fire 8 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 384, 64}); |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| b->Args({1, 13, 13, 3, 3, 2, 2, 1, 1, 1, 64, 256}); |
| /************************** Fire 9 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 512, 64}); |
| //b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| //b->Args({1, 13, 13, 3, 3, 2, 2, 1, 1, 1, 64, 256}); |
| /************************* Conv 10 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 13, 13, 1, 1, 0, 0, 1, 1, 1, 512, 1000}); |
| } |
| |
| static void InceptionV3(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 299, 299, 3, 3, 0, 0, 2, 1, 1, 3, 32}); |
| b->Args({1, 149, 149, 3, 3, 0, 0, 1, 1, 1, 32, 32}); |
| b->Args({1, 147, 147, 3, 3, 2, 2, 1, 1, 1, 32, 64}); |
| b->Args({1, 73, 73, 1, 1, 0, 0, 1, 1, 1, 64, 80}); |
| b->Args({1, 73, 73, 3, 3, 0, 0, 1, 1, 1, 80, 192}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 192, 64}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 192, 48}); |
| b->Args({1, 35, 35, 5, 5, 4, 4, 1, 1, 1, 48, 64}); |
| b->Args({1, 35, 35, 3, 3, 2, 2, 1, 1, 1, 64, 96}); |
| b->Args({1, 35, 35, 3, 3, 2, 2, 1, 1, 1, 96, 96}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 192, 32}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 256, 64}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 256, 48}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 288, 64}); |
| b->Args({1, 35, 35, 1, 1, 0, 0, 1, 1, 1, 288, 48}); |
| b->Args({1, 35, 35, 3, 3, 0, 0, 2, 1, 1, 288, 384}); |
| b->Args({1, 35, 35, 3, 3, 0, 0, 2, 1, 1, 96, 96}); |
| b->Args({1, 17, 17, 1, 1, 0, 0, 1, 1, 1, 768, 192}); |
| b->Args({1, 17, 17, 1, 1, 0, 0, 1, 1, 1, 768, 128}); |
| b->Args({1, 17, 17, 1, 7, 0, 6, 1, 1, 1, 128, 128}); |
| b->Args({1, 17, 17, 7, 1, 6, 0, 1, 1, 1, 128, 192}); |
| b->Args({1, 17, 17, 7, 1, 6, 0, 1, 1, 1, 128, 128}); |
| b->Args({1, 17, 17, 1, 7, 0, 6, 1, 1, 1, 128, 192}); |
| b->Args({1, 17, 17, 1, 1, 0, 0, 1, 1, 1, 768, 160}); |
| b->Args({1, 17, 17, 1, 7, 0, 6, 1, 1, 1, 160, 160}); |
| b->Args({1, 17, 17, 7, 1, 6, 0, 1, 1, 1, 160, 192}); |
| b->Args({1, 17, 17, 7, 1, 6, 0, 1, 1, 1, 160, 160}); |
| b->Args({1, 17, 17, 1, 7, 0, 6, 1, 1, 1, 160, 192}); |
| b->Args({1, 17, 17, 1, 7, 0, 6, 1, 1, 1, 192, 192}); |
| b->Args({1, 17, 17, 7, 1, 6, 0, 1, 1, 1, 192, 192}); |
| b->Args({1, 17, 17, 3, 3, 0, 0, 2, 1, 1, 192, 320}); |
| b->Args({1, 17, 17, 3, 3, 0, 0, 2, 1, 1, 192, 192}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 1280, 320}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 1280, 384}); |
| b->Args({1, 8, 8, 1, 3, 0, 2, 1, 1, 1, 384, 384}); |
| b->Args({1, 8, 8, 3, 1, 2, 0, 1, 1, 1, 384, 384}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 1280, 448}); |
| b->Args({1, 8, 8, 3, 3, 2, 2, 1, 1, 1, 448, 384}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 1280, 192}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 2048, 320}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 2048, 384}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 2048, 448}); |
| b->Args({1, 8, 8, 1, 1, 0, 0, 1, 1, 1, 2048, 192}); |
| b->Args({1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2048, 1001}); |
| } |
| |
| static void ResNet18(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /************************* Conv 1 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 7, 7, 6, 6, 2, 1, 1, 3, 64}); |
| /************************ Conv 2.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 1, 64, 64}); |
| /************************ Conv 3.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 1, 64, 128}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 1, 128, 128}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 2, 1, 1, 64, 128}); |
| /************************ Conv 4.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 1, 128, 256}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 1, 256, 256}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 2, 1, 1, 128, 256}); |
| /************************ Conv 5.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 1, 256, 512}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 1, 512, 512}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 2, 1, 1, 256, 512}); |
| } |
| |
| static void ResNet50(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /************************* Conv 1 *************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 7, 7, 6, 6, 2, 1, 1, 3, 64}); |
| /************************ Conv 2.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 64, 64}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 1, 64, 64}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| //b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| /************************ Conv 2.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 256, 64}); |
| //b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 1, 64, 64}); |
| //b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 64, 256}); |
| /************************ Conv 3.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 256, 128}); |
| b->Args({1, 56, 56, 3, 3, 2, 2, 2, 1, 1, 128, 128}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 128, 512}); |
| b->Args({1, 56, 56, 1, 1, 0, 0, 2, 1, 1, 256, 512}); |
| /************************ Conv 3.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 512, 128}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 1, 128, 128}); |
| //b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 128, 512}); |
| /************************ Conv 4.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 512, 256}); |
| b->Args({1, 28, 28, 3, 3, 2, 2, 2, 1, 1, 256, 256}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 256, 1024}); |
| b->Args({1, 28, 28, 1, 1, 0, 0, 2, 1, 1, 512, 1024}); |
| /************************ Conv 4.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 1024, 256}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 1, 256, 256}); |
| //b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 256, 1024}); |
| /************************ Conv 5.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 1024, 512}); |
| b->Args({1, 14, 14, 3, 3, 2, 2, 2, 1, 1, 512, 512}); |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 512, 2048}); |
| b->Args({1, 14, 14, 1, 1, 0, 0, 2, 1, 1, 1024, 2048}); |
| /************************ Conv 5.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 2048, 512}); |
| b->Args({1, 7, 7, 3, 3, 2, 2, 1, 1, 1, 512, 512}); |
| //b->Args({1, 7, 7, 1, 1, 0, 0, 1, 1, 1, 512, 2048}); |
| } |
| |
| static void VGG(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /************************* Conv 1.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 1, 1, 1, 3, 64}); |
| /************************* Conv 1.2 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 224, 224, 3, 3, 2, 2, 1, 1, 1, 64, 64}); |
| |
| /************************* Conv 2.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 3, 3, 2, 2, 1, 1, 1, 64, 128}); |
| /************************* Conv 2.2 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 112, 112, 3, 3, 2, 2, 1, 1, 1, 128, 128}); |
| |
| /************************* Conv 3.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 1, 128, 256}); |
| /************************* Conv 3.2 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 3, 3, 2, 2, 1, 1, 1, 256, 256}); |
| /************************* Conv 3.3 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 56, 56, 1, 1, 0, 0, 1, 1, 1, 256, 256}); |
| |
| /************************* Conv 4.1 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 1, 256, 512}); |
| /************************* Conv 4.2 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 3, 3, 2, 2, 1, 1, 1, 512, 512}); |
| /************************* Conv 4.3 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 28, 28, 1, 1, 0, 0, 1, 1, 1, 512, 512}); |
| |
| /************************* Conv 5.X ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 3, 3, 2, 2, 1, 1, 1, 512, 512}); |
| /************************* Conv 5.3 ************************/ |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 14, 14, 1, 1, 0, 0, 1, 1, 1, 512, 512}); |
| } |
| |
| // SRCNN (9-1-5) |
| static void SRCNN915(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 384, 384, 9, 9, 0, 0, 1, 1, 1, 1, 64}); |
| b->Args({1, 376, 376, 1, 1, 0, 0, 1, 1, 1, 64, 32}); |
| b->Args({1, 376, 376, 5, 5, 0, 0, 1, 1, 1, 32, 1}); |
| } |
| |
| // SRCNN (9-3-5) |
| static void SRCNN935(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 384, 384, 9, 9, 0, 0, 1, 1, 1, 1, 64}); |
| b->Args({1, 376, 376, 3, 3, 0, 0, 1, 1, 1, 64, 32}); |
| b->Args({1, 374, 374, 5, 5, 0, 0, 1, 1, 1, 32, 1}); |
| } |
| |
| // SRCNN (9-5-5) |
| static void SRCNN955(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "KH", "KW", "PH", "PW", "S", "D", "G", "GCin", "GCout"}); |
| |
| /* N H W KH KW PH PW S D G GCin GCout */ |
| b->Args({1, 384, 384, 9, 9, 0, 0, 1, 1, 1, 1, 64}); |
| b->Args({1, 376, 376, 5, 5, 0, 0, 1, 1, 1, 64, 32}); |
| b->Args({1, 372, 372, 5, 5, 0, 0, 1, 1, 1, 32, 1}); |
| } |
| |
| #ifndef XNN_NO_F16_OPERATORS |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, mobilenet_v1, "MobileNet v1")->Apply(MobileNetV1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, mobilenet_v2, "MobileNet v2")->Apply(MobileNetV2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, mobilenet_v3_small, "MobileNet v3 Small")->Apply(MobileNetV3Small)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, mobilenet_v3_large, "MobileNet v3 Large")->Apply(MobileNetV3Large)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v2_x05, "ShuffleNet v2 0.5X")->Apply(ShuffleNetV2X05)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v2_x10, "ShuffleNet v2 1.0X")->Apply(ShuffleNetV2X10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v2_x15, "ShuffleNet v2 1.5X")->Apply(ShuffleNetV2X15)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, shufflenet_v2_x20, "ShuffleNet v2 2.0X")->Apply(ShuffleNetV2X20)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, squeezenet_v10, "SqueezeNet 1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, squeezenet_v11, "SqueezeNet 1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, inception_v3, "Inception v3")->Apply(InceptionV3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, resnet18, "ResNet-18")->Apply(ResNet18)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, resnet50, "ResNet-50")->Apply(ResNet50)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, vgg, "VGG")->Apply(VGG)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, srcnn915, "SRCNN (9-1-5)")->Apply(SRCNN915)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, srcnn935, "SRCNN (9-3-5)")->Apply(SRCNN935)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f16, srcnn955, "SRCNN (9-5-5)")->Apply(SRCNN955)->UseRealTime(); |
| #endif // XNN_NO_F16_OPERATORS |
| |
| #ifndef XNN_NO_F32_OPERATORS |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, mobilenet_v1, "MobileNet v1")->Apply(MobileNetV1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, mobilenet_v2, "MobileNet v2")->Apply(MobileNetV2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, mobilenet_v3_small, "MobileNet v3 Small")->Apply(MobileNetV3Small)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, mobilenet_v3_large, "MobileNet v3 Large")->Apply(MobileNetV3Large)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v2_x05, "ShuffleNet v2 0.5X")->Apply(ShuffleNetV2X05)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v2_x10, "ShuffleNet v2 1.0X")->Apply(ShuffleNetV2X10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v2_x15, "ShuffleNet v2 1.5X")->Apply(ShuffleNetV2X15)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, shufflenet_v2_x20, "ShuffleNet v2 2.0X")->Apply(ShuffleNetV2X20)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, squeezenet_v10, "SqueezeNet 1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, squeezenet_v11, "SqueezeNet 1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, inception_v3, "Inception v3")->Apply(InceptionV3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, resnet18, "ResNet-18")->Apply(ResNet18)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, resnet50, "ResNet-50")->Apply(ResNet50)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, vgg, "VGG")->Apply(VGG)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, srcnn915, "SRCNN (9-1-5)")->Apply(SRCNN915)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, srcnn935, "SRCNN (9-3-5)")->Apply(SRCNN935)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_f32, srcnn955, "SRCNN (9-5-5)")->Apply(SRCNN955)->UseRealTime(); |
| #endif // XNN_NO_F32_OPERATORS |
| |
| #ifndef XNN_NO_QS8_OPERATORS |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, mobilenet_v1, "MobileNet v1")->Apply(MobileNetV1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, mobilenet_v2, "MobileNet v2")->Apply(MobileNetV2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, mobilenet_v3_small, "MobileNet v3 Small")->Apply(MobileNetV3Small)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, mobilenet_v3_large, "MobileNet v3 Large")->Apply(MobileNetV3Large)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v2_x05, "ShuffleNet v2 0.5X")->Apply(ShuffleNetV2X05)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v2_x10, "ShuffleNet v2 1.0X")->Apply(ShuffleNetV2X10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v2_x15, "ShuffleNet v2 1.5X")->Apply(ShuffleNetV2X15)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, shufflenet_v2_x20, "ShuffleNet v2 2.0X")->Apply(ShuffleNetV2X20)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, squeezenet_v10, "SqueezeNet 1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, squeezenet_v11, "SqueezeNet 1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, inception_v3, "Inception v3")->Apply(InceptionV3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, resnet18, "ResNet-18")->Apply(ResNet18)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, resnet50, "ResNet-50")->Apply(ResNet50)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, vgg, "VGG")->Apply(VGG)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, srcnn915, "SRCNN (9-1-5)")->Apply(SRCNN915)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, srcnn935, "SRCNN (9-3-5)")->Apply(SRCNN935)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qs8, srcnn955, "SRCNN (9-5-5)")->Apply(SRCNN955)->UseRealTime(); |
| #endif // XNN_NO_QS8_OPERATORS |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, mobilenet_v1, "MobileNet v1")->Apply(MobileNetV1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, mobilenet_v2, "MobileNet v2")->Apply(MobileNetV2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, mobilenet_v3_small, "MobileNet v3 Small")->Apply(MobileNetV3Small)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, mobilenet_v3_large, "MobileNet v3 Large")->Apply(MobileNetV3Large)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v2_x05, "ShuffleNet v2 0.5X")->Apply(ShuffleNetV2X05)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v2_x10, "ShuffleNet v2 1.0X")->Apply(ShuffleNetV2X10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v2_x15, "ShuffleNet v2 1.5X")->Apply(ShuffleNetV2X15)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, shufflenet_v2_x20, "ShuffleNet v2 2.0X")->Apply(ShuffleNetV2X20)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, squeezenet_v10, "SqueezeNet 1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, squeezenet_v11, "SqueezeNet 1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, inception_v3, "Inception v3")->Apply(InceptionV3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, resnet18, "ResNet-18")->Apply(ResNet18)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, resnet50, "ResNet-50")->Apply(ResNet50)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, vgg, "VGG")->Apply(VGG)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, srcnn915, "SRCNN (9-1-5)")->Apply(SRCNN915)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, srcnn935, "SRCNN (9-3-5)")->Apply(SRCNN935)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_convolution_qu8, srcnn955, "SRCNN (9-5-5)")->Apply(SRCNN955)->UseRealTime(); |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK_CAPTURE(tflite_convolution_f32, mobilenet_v1, "MobileNet v1")->Apply(MobileNetV1)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, mobilenet_v2, "MobileNet v2")->Apply(MobileNetV2)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, mobilenet_v3_small, "MobileNet v3 Small")->Apply(MobileNetV3Small)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, mobilenet_v3_large, "MobileNet v3 Large")->Apply(MobileNetV3Large)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v2_x05, "ShuffleNet v2 0.5X")->Apply(ShuffleNetV2X05)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v2_x10, "ShuffleNet v2 1.0X")->Apply(ShuffleNetV2X10)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v2_x15, "ShuffleNet v2 1.5X")->Apply(ShuffleNetV2X15)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, shufflenet_v2_x20, "ShuffleNet v2 2.0X")->Apply(ShuffleNetV2X20)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, squeezenet_v10, "SqueezeNet 1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, squeezenet_v11, "SqueezeNet 1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, inception_v3, "Inception v3")->Apply(InceptionV3)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, resnet18, "ResNet-18")->Apply(ResNet18)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, resnet50, "ResNet-50")->Apply(ResNet50)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, vgg, "VGG")->Apply(VGG)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, srcnn915, "SRCNN (9-1-5)")->Apply(SRCNN915)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, srcnn935, "SRCNN (9-3-5)")->Apply(SRCNN935)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_convolution_f32, srcnn955, "SRCNN (9-5-5)")->Apply(SRCNN955)->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifdef BENCHMARK_ARM_COMPUTE_LIBRARY |
| BENCHMARK_CAPTURE(armcl_convolution_f32, mobilenet_v1, "MobileNet v1")->Apply(MobileNetV1)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, mobilenet_v2, "MobileNet v2")->Apply(MobileNetV2)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v2_x05, "ShuffleNet v2 0.5X")->Apply(ShuffleNetV2X05)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v2_x10, "ShuffleNet v2 1.0X")->Apply(ShuffleNetV2X10)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v2_x15, "ShuffleNet v2 1.5X")->Apply(ShuffleNetV2X15)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, shufflenet_v2_x20, "ShuffleNet v2 2.0X")->Apply(ShuffleNetV2X20)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, squeezenet_v10, "SqueezeNet 1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, squeezenet_v11, "SqueezeNet 1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, inception_v3, "Inception v3")->Apply(InceptionV3)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, resnet18, "ResNet-18")->Apply(ResNet18)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, resnet50, "ResNet-50")->Apply(ResNet50)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, vgg, "VGG")->Apply(VGG)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, srcnn915, "SRCNN (9-1-5)")->Apply(SRCNN915)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, srcnn935, "SRCNN (9-3-5)")->Apply(SRCNN935)->UseRealTime(); |
| BENCHMARK_CAPTURE(armcl_convolution_f32, srcnn955, "SRCNN (9-5-5)")->Apply(SRCNN955)->UseRealTime(); |
| #endif // BENCHMARK_ARM_COMPUTE_LIBRARY |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |