blob: 6e4c433a2564175e7b9ca2b4ff690070c0b0b56c [file] [log] [blame]
#!/usr/bin/env python
# Copyright 2019 Google LLC
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import bisect
import codecs
import math
import os
import sys
import yaml
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from primes import next_prime
import xngen
parser = argparse.ArgumentParser(description='XNNPACK generator')
parser.add_argument("-s", "--spec", metavar="FILE", required=True,
help="Spec (YAML) file")
parser.add_argument("-o", "--output", metavar="FILE", required=True,
help='Output (C++ source) file')
parser.set_defaults(defines=list())
def indent(text):
return "\n".join(map(lambda t: " " + t if t else t, text.splitlines()))
def remove_duplicate_newlines(text):
filtered_lines = list()
last_newline = False
for line in text.splitlines():
is_newline = len(line.strip()) == 0
if not is_newline or not last_newline:
filtered_lines.append(line)
last_newline = is_newline
return "\n".join(filtered_lines)
ARCH_TO_MACRO_MAP = {
"aarch32": "XNN_ARCH_ARM",
"aarch64": "XNN_ARCH_ARM64",
"x86": "XNN_ARCH_X86",
"x86-64": "XNN_ARCH_X86_64",
}
ISA_TO_ARCH_MAP = {
"neon": ["aarch32", "aarch64"],
"neonfma": ["aarch32", "aarch64"],
"neonfp16arith": ["aarch32", "aarch64"],
"sse": ["x86", "x86-64"],
"sse2": ["x86", "x86-64"],
"avx": ["x86", "x86-64"],
"avx512f": ["x86", "x86-64"],
"psimd": [],
}
ISA_TO_CHECK_MAP = {
"neon": "TEST_REQUIRES_ARM_NEON",
"neonfma": "TEST_REQUIRES_ARM_NEON_FMA",
"neonfp16arith": "TEST_REQUIRES_ARM_NEON_FP16_ARITH",
"sse": "TEST_REQUIRES_X86_SSE",
"sse2": "TEST_REQUIRES_X86_SSE2",
"avx": "TEST_REQUIRES_X86_AVX",
"avx512f": "TEST_REQUIRES_X86_AVX512F",
"psimd": "TEST_REQUIRES_PSIMD",
}
def split_ukernel_name(name):
common_name, target_name = name.split("__", 1)
common_parts = common_name.split("_")
param_spec = common_parts[-1]
assert param_spec.startswith("up")
cr, kr = map(int, param_spec[2:].split("x"))
arch = list()
isa = None
for target_part in target_name.split("_"):
if target_part in ARCH_TO_MACRO_MAP:
arch = [target_part]
elif target_part in ISA_TO_ARCH_MAP:
isa = target_part
if isa and not arch:
arch = ISA_TO_ARCH_MAP[isa]
return cr, kr, arch, isa
DWCONV_TEST_CODE = """\
TEST(${TEST_NAME}, c_eq_${CBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(${CBLOCK})
.Test(${", ".join(TEST_ARGS)});
}
$if IS_PIPELINED:
TEST(${TEST_NAME}, c_eq_${CBLOCK * 2}) {
$if ISA_CHECK:
${ISA_CHECK};
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(${CBLOCK * 2})
.Test(${", ".join(TEST_ARGS)});
}
$if CBLOCK > 1:
TEST(${TEST_NAME}, c_div_${CBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, c_div_${CBLOCK}_with_qmin) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.qmin(128)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, c_div_${CBLOCK}_with_qmax) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.qmax(128)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, c_lt_${ADJCBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = 1; channels < ${ADJCBLOCK}; channels++) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, c_gt_${ADJCBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = ${ADJCBLOCK + 1}; channels < ${10 if CBLOCK == 1 else ADJCBLOCK + CBLOCK}; channels++) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, c_gt_${ADJCBLOCK}_with_qmin) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = ${ADJCBLOCK + 1}; channels < ${10 if CBLOCK == 1 else ADJCBLOCK + CBLOCK}; channels++) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.qmin(128)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, c_gt_${ADJCBLOCK}_with_qmax) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t channels = ${ADJCBLOCK + 1}; channels < ${10 if CBLOCK == 1 else ADJCBLOCK + CBLOCK}; channels++) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.qmax(128)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, multipixel) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.width(3)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, multipixel_with_step) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
for (size_t step = 2; step <= ${KR}; step++) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.width(3)
.step(step)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, multipixel_with_output_stride) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(${CR})
.width(5)
.output_stride(${next_prime(CR * 5 + 1)})
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, multipixel_with_qmin) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.width(3)
.qmin(128)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, multipixel_with_qmax) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.width(3)
.qmax(128)
.Test(${", ".join(TEST_ARGS)});
}
}
$if DATATYPE == "q8":
TEST(${TEST_NAME}, input_zero_point_only) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.width(3)
.input_zero_point(255)
.kernel_zero_point(0)
.Test(${", ".join(TEST_ARGS)});
}
}
TEST(${TEST_NAME}, kernel_zero_point_only) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) {
DWConvMicrokernelTester()
.cr(${CR})
.kr(${KR})
.channels(channels)
.width(3)
.input_zero_point(0)
.kernel_zero_point(255)
.Test(${", ".join(TEST_ARGS)});
}
}
"""
def generate_test_cases(ukernel, cr, kr, c_block, is_pipelined, isa):
"""Generates all tests cases for a DWCONV micro-kernel.
Args:
ukernel: C name of the micro-kernel function.
cr: CR parameter of the DWCONV micro-kernel.
kr: KR parameter of the DWCONV micro-kernel.
k_block: Number of C values processed per one iteration of the main loop of
the micro-kernel.
is_pipelined: Indicates if the micro-kernel is implemented with software
pipelining. Additional test cases are generated for software
pipelined micro-kernels to separately test prologue + epiloque
of the pipelined loop and iteration of the pipelined loop.
isa: instruction set required to run the micro-kernel. Generated unit test
will skip execution if the host processor doesn't support this ISA.
Returns:
Code for the test case.
"""
_, test_name = ukernel.split("_", 1)
_, datatype, ukernel_type, _ = ukernel.split("_", 3)
test_args = [ukernel]
if not isa or isa == "psimd":
test_args.append("DWConvMicrokernelTester::Variant::Scalar")
return xngen.preprocess(DWCONV_TEST_CODE, {
"TEST_NAME": test_name.upper().replace("UKERNEL_", ""),
"TEST_ARGS": test_args,
"UKERNEL_TYPE": ukernel_type.upper(),
"DATATYPE": datatype,
"CR": cr,
"KR": kr,
"CBLOCK": c_block,
"ADJCBLOCK": 2 * c_block if is_pipelined else c_block,
"IS_PIPELINED": is_pipelined,
"ISA_CHECK": ISA_TO_CHECK_MAP.get(isa, ""),
"next_prime": next_prime,
"sqrt": math.sqrt,
})
def main(args):
options = parser.parse_args(args)
with codecs.open(options.spec, "r", encoding="utf-8") as spec_file:
spec_yaml = yaml.safe_load(spec_file)
if not isinstance(spec_yaml, list):
raise ValueError("expected a list of micro-kernels in the spec")
tests = """\
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
//
// Auto-generated file. Do not edit!
// Specification: {specification}
// Generator: {generator}
#include <gtest/gtest.h>
#include <xnnpack/common.h>
#include <xnnpack/isa-checks.h>
#include <xnnpack/dwconv.h>
#include "dwconv-microkernel-tester.h"
""".format(specification=options.spec, generator=sys.argv[0])
for ukernel_spec in spec_yaml:
name = ukernel_spec["name"]
pipelined = bool(ukernel_spec.get("pipelined", False))
assembly = bool(ukernel_spec.get("assembly", False))
cr, kr, arch, isa = split_ukernel_name(name)
# specification can override architecture
arch = ukernel_spec.get("arch", arch)
test_case = generate_test_cases(name, cr, kr, cr, pipelined, isa)
test_case = remove_duplicate_newlines(test_case)
tests += "\n\n"
if arch:
guard_macro = " || ".join(map(ARCH_TO_MACRO_MAP.get, arch))
if assembly:
guard_macro += " && XNN_ENABLE_ASSEMBLY"
tests += "#if %s\n" % guard_macro
tests += indent(test_case) + "\n"
tests += "#endif // %s\n" % guard_macro
elif isa == "psimd":
guard_macro = "!XNN_ARCH_ASMJS && !XNN_ARCH_WASM"
tests += "#if %s\n" % guard_macro
tests += indent(test_case) + "\n"
tests += "#endif // %s\n" % guard_macro
else:
tests += test_case
with codecs.open(options.output, "w", encoding="utf-8") as output_file:
output_file.write(tests)
if __name__ == "__main__":
main(sys.argv[1:])