blob: 41ea9183d6764bd4ce3564d974ae999ecf56c3e0 [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/qs8-gemm/MRx4c2-sse.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <smmintrin.h>
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
void xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__sse41(
size_t mr,
size_t nc,
size_t kc,
const int8_t* restrict a,
size_t a_stride,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(mr != 0);
assert(mr <= 2);
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(int8_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
kc = round_up_po2(kc, 2);
const int8_t* a0 = a;
int8_t* c0 = c;
const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
if XNN_UNPREDICTABLE(mr != 2) {
a1 = a0;
c1 = c0;
}
do {
__m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
__m128i vacc1x0123 = vacc0x0123;
w = (const void*) ((const int32_t*) w + 4);
size_t k = kc;
while (k >= 8 * sizeof(int8_t)) {
const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
a0 += 8;
const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
a1 += 8;
const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
w = (const void*) ((const int16_t*) w + 32);
k -= 8 * sizeof(int8_t);
}
if (k != 0) {
const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
a0 = (const int8_t*) ((uintptr_t) a0 + k);
const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
a1 = (const int8_t*) ((uintptr_t) a1 + k);
const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
w = (const void*) ((const int16_t*) w + 8);
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
if (k > 2 * sizeof(int8_t)) {
const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
w = (const void*) ((const int16_t*) w + 8);
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
if (k > 4 * sizeof(int8_t)) {
const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
w = (const void*) ((const int16_t*) w + 8);
vacc0x0123 = _mm_add_epi32(vacc0x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
vacc1x0123 = _mm_add_epi32(vacc1x0123,
_mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
}
}
}
__m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
__m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
__m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
__m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
vout = _mm_min_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_max));
if (nc >= 4) {
*((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
*((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1);
c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
a0 = (const int8_t*) ((uintptr_t) a0 - kc);
a1 = (const int8_t*) ((uintptr_t) a1 - kc);
nc -= 4;
} else {
if (nc & 2) {
*((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
c0 += 2;
*((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
c1 += 2;
vout = _mm_srli_epi32(vout, 16);
}
if (nc & 1) {
*c0 = (int8_t) _mm_extract_epi8(vout, 0);
*c1 = (int8_t) _mm_extract_epi8(vout, 4);
}
nc = 0;
}
} while (nc != 0);
}