| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/requantization.h> |
| |
| |
| class AvgPoolMicrokernelTester { |
| public: |
| inline AvgPoolMicrokernelTester& output_pixels(size_t output_pixels) { |
| assert(output_pixels != 0); |
| this->output_pixels_ = output_pixels; |
| return *this; |
| } |
| |
| inline size_t output_pixels() const { |
| return this->output_pixels_; |
| } |
| |
| inline AvgPoolMicrokernelTester& step(size_t step) { |
| assert(step != 0); |
| this->step_ = step; |
| return *this; |
| } |
| |
| inline size_t step() const { |
| return this->step_; |
| } |
| |
| inline AvgPoolMicrokernelTester& input_offset(size_t input_offset) { |
| assert(input_offset != 0); |
| this->input_offset_ = input_offset; |
| return *this; |
| } |
| |
| inline size_t input_offset() const { |
| return this->input_offset_; |
| } |
| |
| inline AvgPoolMicrokernelTester& zero_index(size_t zero_index) { |
| this->zero_index_ = zero_index; |
| return *this; |
| } |
| |
| inline size_t zero_index() const { |
| return this->zero_index_; |
| } |
| |
| inline AvgPoolMicrokernelTester& pooling_elements(size_t pooling_elements) { |
| assert(pooling_elements != 0); |
| this->pooling_elements_ = pooling_elements; |
| return *this; |
| } |
| |
| inline size_t pooling_elements() const { |
| return this->pooling_elements_; |
| } |
| |
| inline size_t packed_pooling_elements() const { |
| if (pooling_elements() <= primary_pooling_tile()) { |
| return primary_pooling_tile(); |
| } else { |
| return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile(); |
| } |
| } |
| |
| inline AvgPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile = 0) { |
| assert(primary_tile != 0); |
| this->primary_pooling_tile_ = primary_tile; |
| this->incremental_pooling_tile_ = incremental_tile; |
| return *this; |
| } |
| |
| inline AvgPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) { |
| assert(primary_pooling_tile != 0); |
| this->primary_pooling_tile_ = primary_pooling_tile; |
| return *this; |
| } |
| |
| inline size_t primary_pooling_tile() const { |
| return this->primary_pooling_tile_; |
| } |
| |
| inline AvgPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) { |
| assert(incremental_pooling_tile != 0); |
| this->incremental_pooling_tile_ = incremental_pooling_tile; |
| return *this; |
| } |
| |
| inline size_t incremental_pooling_tile() const { |
| return this->incremental_pooling_tile_; |
| } |
| |
| inline AvgPoolMicrokernelTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline AvgPoolMicrokernelTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return channels(); |
| } else { |
| assert(this->output_stride_ >= channels()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline AvgPoolMicrokernelTester& input_scale(float input_scale) { |
| assert(input_scale > 0.0f); |
| assert(std::isnormal(input_scale)); |
| this->input_scale_ = input_scale; |
| return *this; |
| } |
| |
| inline float input_scale() const { |
| return this->input_scale_; |
| } |
| |
| inline AvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) { |
| this->input_zero_point_ = input_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t input_zero_point() const { |
| return this->input_zero_point_; |
| } |
| |
| inline AvgPoolMicrokernelTester& output_scale(float output_scale) { |
| assert(output_scale > 0.0f); |
| assert(std::isnormal(output_scale)); |
| this->output_scale_ = output_scale; |
| return *this; |
| } |
| |
| inline float output_scale() const { |
| return this->output_scale_; |
| } |
| |
| inline AvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) { |
| this->output_zero_point_ = output_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t output_zero_point() const { |
| return this->output_zero_point_; |
| } |
| |
| inline AvgPoolMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline AvgPoolMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline AvgPoolMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_qu8_avgpool_minmax_unipass_ukernel_function avgpool_minmax, xnn_init_qu8_avgpool_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + |
| input_offset() + indirect_input.size() * channels()); |
| std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<uint8_t> output_ref(output_pixels() * channels()); |
| std::vector<float> output_real(output_pixels() * channels()); |
| std::vector<int32_t> accumulator(output_pixels() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| do { |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); |
| std::fill(input.begin(), input.begin() + input_offset(), 0xA5); |
| std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), 0xA5); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| if (zero_index() != SIZE_MAX) { |
| indirect_input[zero_index()] = zero.data(); |
| } |
| |
| // Prepare parameters. |
| xnn_qu8_avgpool_minmax_params params; |
| init_params( |
| ¶ms, |
| -int32_t(input_zero_point()) * int32_t(pooling_elements()), |
| input_scale() / (output_scale() * float(pooling_elements())), |
| output_zero_point(), qmin(), qmax()); |
| |
| // Compute reference results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| int32_t acc = 0; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const uint8_t* row = indirect_input[x * step() + p]; |
| if (row != zero.data()) { |
| acc += int32_t(row[c + input_offset()]); |
| } |
| acc -= int32_t(input_zero_point()); |
| } |
| accumulator[x * channels() + c] = acc; |
| output_ref[x * channels() + c] = xnn_qu8_requantize_rndna( |
| acc, input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); |
| const float scaled_acc = |
| float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point()); |
| output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax())); |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| avgpool_minmax(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(), |
| output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(uint8_t), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin())) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax())) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; |
| ASSERT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c])) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_qu8_avgpool_minmax_multipass_ukernel_function avgpool_minmax, xnn_init_qu8_avgpool_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + |
| input_offset() + indirect_input.size() * channels()); |
| std::vector<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<uint8_t> output_ref(output_pixels() * channels()); |
| std::vector<float> output_real(output_pixels() * channels()); |
| std::vector<int32_t> accumulator(output_pixels() * channels()); |
| std::vector<int32_t, AlignedAllocator<int32_t, 64>> buffer(XNN_EXTRA_BYTES / sizeof(uint8_t) + channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| do { |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); |
| std::fill(input.begin(), input.begin() + input_offset(), 0xA5); |
| std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), 0xA5); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| if (zero_index() != SIZE_MAX) { |
| indirect_input[zero_index()] = zero.data(); |
| } |
| |
| // Prepare parameters. |
| xnn_qu8_avgpool_minmax_params params; |
| init_params( |
| ¶ms, |
| -int32_t(input_zero_point()) * int32_t(pooling_elements()), |
| input_scale() / (output_scale() * float(pooling_elements())), |
| output_zero_point(), qmin(), qmax()); |
| |
| // Compute reference results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| int32_t acc = 0; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const uint8_t* row = indirect_input[x * step() + p]; |
| if (row != zero.data()) { |
| acc += int32_t(row[c + input_offset()]); |
| } |
| acc -= int32_t(input_zero_point()); |
| } |
| accumulator[x * channels() + c] = acc; |
| output_ref[x * channels() + c] = xnn_qu8_requantize_rndna( |
| acc, input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax()); |
| const float scaled_acc = |
| float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point()); |
| output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax())); |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| avgpool_minmax(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(), |
| buffer.data(), output.data(), |
| (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), |
| (output_stride() - channels()) * sizeof(uint8_t), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin())) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax())) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; |
| ASSERT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c])) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c]; |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_avgpool_minmax_unipass_ukernel_function avgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| input_offset() + indirect_input.size() * channels()); |
| std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(output_pixels() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); |
| std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| if (zero_index() != SIZE_MAX) { |
| indirect_input[zero_index()] = zero.data(); |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = 0.0f; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const float* row = indirect_input[x * step() + p]; |
| if (row != zero.data()) { |
| acc += row[c + input_offset()]; |
| } |
| } |
| output_ref[x * channels() + c] = acc / float(pooling_elements()); |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; |
| const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; |
| |
| // Clamp reference results. |
| for (float& output_value : output_ref) { |
| output_value = std::max(std::min(output_value, output_max), output_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_scaleminmax_params params; |
| init_params(¶ms, 1.0f / float(pooling_elements()), output_min, output_max); |
| |
| // Call optimized micro-kernel. |
| avgpool_minmax(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(float), zero.data(), |
| output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(output[x * output_stride() + c], output_min) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_LE(output[x * output_stride() + c], output_max) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_NEAR( |
| output[x * output_stride() + c], |
| output_ref[x * channels() + c], |
| std::abs(output_ref[x * channels() + c]) * 1.0e-6f) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_avgpool_minmax_multipass_ukernel_function avgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| input_offset() + indirect_input.size() * channels()); |
| std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(output_pixels() * channels()); |
| std::vector<float, AlignedAllocator<float, 64>> buffer(XNN_EXTRA_BYTES / sizeof(float) + channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); |
| std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| if (zero_index() != SIZE_MAX) { |
| indirect_input[zero_index()] = zero.data(); |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = 0.0f; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const float* row = indirect_input[x * step() + p]; |
| if (row != zero.data()) { |
| acc += row[c + input_offset()]; |
| } |
| } |
| output_ref[x * channels() + c] = acc / float(pooling_elements()); |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; |
| const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; |
| |
| // Clamp reference results. |
| for (float& output_value : output_ref) { |
| output_value = std::max(std::min(output_value, output_max), output_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_scaleminmax_params params; |
| init_params(¶ms, 1.0f / float(pooling_elements()), output_min, output_max); |
| |
| // Call optimized micro-kernel. |
| avgpool_minmax(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(float), zero.data(), |
| buffer.data(), output.data(), |
| (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(output[x * output_stride() + c], output_min) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_LE(output[x * output_stride() + c], output_max) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_NEAR( |
| output[x * output_stride() + c], |
| output_ref[x * channels() + c], |
| std::abs(output_ref[x * channels() + c]) * 1.0e-6f) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_pavgpool_minmax_unipass_ukernel_function pavgpool_minmax, xnn_init_f32_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32irng = std::bind(std::uniform_real_distribution<float>(), rng); |
| auto f32mrng = std::bind(std::uniform_real_distribution<float>(0.1f, 0.5f), rng); |
| |
| std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| input_offset() + indirect_input.size() * channels()); |
| std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> multiplier(output_pixels()); |
| std::vector<float> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(output_pixels() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32irng)); |
| std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); |
| std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); |
| std::generate(multiplier.begin(), multiplier.end(), std::ref(f32mrng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| if (zero_index() != SIZE_MAX) { |
| indirect_input[zero_index()] = zero.data(); |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = 0.0f; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const float* row = indirect_input[x * step() + p]; |
| if (row != zero.data()) { |
| acc += row[c + input_offset()]; |
| } |
| } |
| output_ref[x * channels() + c] = acc * multiplier[x]; |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; |
| const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; |
| |
| // Clamp reference results. |
| for (float& output_value : output_ref) { |
| output_value = std::max(std::min(output_value, output_max), output_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_minmax_params params; |
| init_params(¶ms, output_min, output_max); |
| |
| // Call optimized micro-kernel. |
| pavgpool_minmax(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(float), zero.data(), |
| multiplier.data(), output.data(), |
| step() * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(output[x * output_stride() + c], output_min) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_LE(output[x * output_stride() + c], output_max) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_NEAR( |
| output[x * output_stride() + c], |
| output_ref[x * channels() + c], |
| std::abs(output_ref[x * channels() + c]) * 1.0e-6f) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_pavgpool_minmax_multipass_ukernel_function pavgpool_minmax, xnn_init_f32_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32irng = std::bind(std::uniform_real_distribution<float>(), rng); |
| auto f32mrng = std::bind(std::uniform_real_distribution<float>(0.1f, 0.5f), rng); |
| |
| std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements()); |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| input_offset() + indirect_input.size() * channels()); |
| std::vector<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> multiplier(output_pixels()); |
| std::vector<float> output((output_pixels() - 1) * output_stride() + channels()); |
| std::vector<float> output_ref(output_pixels() * channels()); |
| std::vector<float, AlignedAllocator<float, 64>> buffer(XNN_EXTRA_BYTES / sizeof(float) + channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32irng)); |
| std::fill(input.begin(), input.begin() + input_offset(), std::nanf("")); |
| std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf("")); |
| std::generate(multiplier.begin(), multiplier.end(), std::ref(f32mrng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) { |
| indirect_input[i] = input.data() + i * channels(); |
| } |
| std::shuffle(indirect_input.begin(), |
| indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng); |
| if (zero_index() != SIZE_MAX) { |
| indirect_input[zero_index()] = zero.data(); |
| } |
| |
| // Compute reference results, without clamping. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| float acc = 0.0f; |
| for (size_t p = 0; p < pooling_elements(); p++) { |
| const float* row = indirect_input[x * step() + p]; |
| if (row != zero.data()) { |
| acc += row[c + input_offset()]; |
| } |
| } |
| output_ref[x * channels() + c] = acc * multiplier[x]; |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; |
| const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; |
| |
| // Clamp reference results. |
| for (float& output_value : output_ref) { |
| output_value = std::max(std::min(output_value, output_max), output_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_minmax_params params; |
| init_params(¶ms, output_min, output_max); |
| |
| // Call optimized micro-kernel. |
| pavgpool_minmax(output_pixels(), pooling_elements(), channels(), |
| indirect_input.data(), input_offset() * sizeof(float), zero.data(), |
| multiplier.data(), buffer.data(), output.data(), |
| (step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*), |
| (output_stride() - channels()) * sizeof(float), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t x = 0; x < output_pixels(); x++) { |
| for (size_t c = 0; c < channels(); c++) { |
| ASSERT_GE(output[x * output_stride() + c], output_min) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_LE(output[x * output_stride() + c], output_max) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| ASSERT_NEAR( |
| output[x * output_stride() + c], |
| output_ref[x * channels() + c], |
| std::abs(output_ref[x * channels() + c]) * 1.0e-6f) |
| << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels() |
| << ", pooling elements = " << pooling_elements() << ", step = " << step() |
| << ", input offset = " << input_offset(); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t output_pixels_{1}; |
| size_t pooling_elements_{1}; |
| size_t channels_{1}; |
| size_t input_offset_{0}; |
| size_t zero_index_{SIZE_MAX}; |
| size_t step_{1}; |
| size_t primary_pooling_tile_{1}; |
| size_t incremental_pooling_tile_{1}; |
| size_t output_stride_{0}; |
| float input_scale_{1.25f}; |
| float output_scale_{0.75f}; |
| uint8_t input_zero_point_{121}; |
| uint8_t output_zero_point_{133}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{3}; |
| }; |