| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| class VBinaryCMicrokernelTester { |
| public: |
| enum class OpType { |
| AddC, |
| DivC, |
| RDivC, |
| MaxC, |
| MinC, |
| MulC, |
| SqrDiffC, |
| SubC, |
| RSubC, |
| }; |
| |
| inline VBinaryCMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline VBinaryCMicrokernelTester& inplace(bool inplace) { |
| this->inplace_ = inplace; |
| return *this; |
| } |
| |
| inline bool inplace() const { |
| return this->inplace_; |
| } |
| |
| inline VBinaryCMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline VBinaryCMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline VBinaryCMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f16_vbinary_ukernel_function vbinaryc, OpType op_type) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| const uint16_t b = f16rng(); |
| std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f16rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f16rng)); |
| } else { |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| } |
| const uint16_t* a_data = inplace() ? y.data() : a.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::AddC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::DivC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::RDivC: |
| y_ref[i] = fp16_ieee_to_fp32_value(b) / fp16_ieee_to_fp32_value(a_data[i]); |
| break; |
| case OpType::MaxC: |
| y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b)); |
| break; |
| case OpType::MinC: |
| y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b)); |
| break; |
| case OpType::MulC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::SqrDiffC: |
| { |
| const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b); |
| y_ref[i] = diff * diff; |
| break; |
| } |
| case OpType::SubC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::RSubC: |
| y_ref[i] = fp16_ieee_to_fp32_value(b) - fp16_ieee_to_fp32_value(a_data[i]); |
| break; |
| } |
| } |
| // Call optimized micro-kernel. |
| vbinaryc(batch_size() * sizeof(uint16_t), a_data, &b, y.data(), nullptr); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f)) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_f16_vbinary_minmax_ukernel_function vbinaryc_minmax, OpType op_type, xnn_init_f16_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(1.0e-3f, 1.0f), rng); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| const uint16_t b = f16rng(); |
| std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f16rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f16rng)); |
| } else { |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| } |
| const uint16_t* a_data = inplace() ? y.data() : a.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::AddC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::DivC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::RDivC: |
| y_ref[i] = fp16_ieee_to_fp32_value(b) / fp16_ieee_to_fp32_value(a_data[i]); |
| break; |
| case OpType::MaxC: |
| y_ref[i] = std::max<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b)); |
| break; |
| case OpType::MinC: |
| y_ref[i] = std::min<float>(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b)); |
| break; |
| case OpType::MulC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::SqrDiffC: |
| { |
| const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b); |
| y_ref[i] = diff * diff; |
| break; |
| } |
| case OpType::SubC: |
| y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b); |
| break; |
| case OpType::RSubC: |
| y_ref[i] = fp16_ieee_to_fp32_value(b) - fp16_ieee_to_fp32_value(a_data[i]); |
| break; |
| } |
| } |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ? |
| (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) : |
| +std::numeric_limits<float>::infinity())); |
| const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ? |
| (accumulated_min + accumulated_range / 255.0f * float(qmin())) : |
| -std::numeric_limits<float>::infinity())); |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f16_minmax_params params; |
| init_params(¶ms, |
| fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max)); |
| |
| // Call optimized micro-kernel. |
| vbinaryc_minmax(batch_size() * sizeof(uint16_t), a_data, &b, y.data(), ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f)) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_f32_vbinary_ukernel_function vbinaryc, OpType op_type, xnn_init_f32_default_params_fn init_params = nullptr) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| |
| std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| const float b = f32rng(); |
| std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f32rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f32rng)); |
| } else { |
| std::fill(y.begin(), y.end(), nanf("")); |
| } |
| const float* a_data = inplace() ? y.data() : a.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::AddC: |
| y_ref[i] = a_data[i] + b; |
| break; |
| case OpType::DivC: |
| y_ref[i] = a_data[i] / b; |
| break; |
| case OpType::RDivC: |
| y_ref[i] = b / a_data[i]; |
| break; |
| case OpType::MaxC: |
| y_ref[i] = std::max<float>(a_data[i], b); |
| break; |
| case OpType::MinC: |
| y_ref[i] = std::min<float>(a_data[i], b); |
| break; |
| case OpType::MulC: |
| y_ref[i] = a_data[i] * b; |
| break; |
| case OpType::SqrDiffC: |
| { |
| const float diff = a_data[i] - b; |
| y_ref[i] = diff * diff; |
| break; |
| } |
| case OpType::SubC: |
| y_ref[i] = a_data[i] - b; |
| break; |
| case OpType::RSubC: |
| y_ref[i] = b - a_data[i]; |
| break; |
| } |
| } |
| |
| // Prepare parameters. |
| xnn_f32_default_params params; |
| if (init_params) { |
| init_params(¶ms); |
| } |
| |
| // Call optimized micro-kernel. |
| vbinaryc(batch_size() * sizeof(float), a_data, &b, y.data(), init_params != nullptr ? ¶ms : nullptr); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_f32_vbinary_relu_ukernel_function vbinaryc_relu, OpType op_type) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng); |
| |
| std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| const float b = f32rng(); |
| std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f32rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f32rng)); |
| } else { |
| std::fill(y.begin(), y.end(), nanf("")); |
| } |
| const float* a_data = inplace() ? y.data() : a.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::AddC: |
| y_ref[i] = a_data[i] + b; |
| break; |
| case OpType::DivC: |
| y_ref[i] = a_data[i] / b; |
| break; |
| case OpType::RDivC: |
| y_ref[i] = b / a_data[i]; |
| break; |
| case OpType::MaxC: |
| y_ref[i] = std::max<float>(a_data[i], b); |
| break; |
| case OpType::MinC: |
| y_ref[i] = std::min<float>(a_data[i], b); |
| break; |
| case OpType::MulC: |
| y_ref[i] = a_data[i] * b; |
| break; |
| case OpType::SqrDiffC: |
| { |
| const float diff = a_data[i] - b; |
| y_ref[i] = diff * diff; |
| break; |
| } |
| case OpType::SubC: |
| y_ref[i] = a_data[i] - b; |
| break; |
| case OpType::RSubC: |
| y_ref[i] = b - a_data[i]; |
| break; |
| } |
| } |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_ref[i] = std::max(y_ref[i], 0.0f); |
| } |
| |
| // Call optimized micro-kernel. |
| vbinaryc_relu(batch_size() * sizeof(float), a_data, &b, y.data(), nullptr); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_GE(y[i], 0.0f) |
| << "at " << i << " / " << batch_size(); |
| ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_f32_vbinary_minmax_ukernel_function vbinaryc_minmax, OpType op_type, xnn_init_f32_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| |
| std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| const float b = f32rng(); |
| std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f32rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f32rng)); |
| } else { |
| std::fill(y.begin(), y.end(), nanf("")); |
| } |
| const float* a_data = inplace() ? y.data() : a.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::AddC: |
| y_ref[i] = a_data[i] + b; |
| break; |
| case OpType::DivC: |
| y_ref[i] = a_data[i] / b; |
| break; |
| case OpType::RDivC: |
| y_ref[i] = b / a_data[i]; |
| break; |
| case OpType::MaxC: |
| y_ref[i] = std::max<float>(a_data[i], b); |
| break; |
| case OpType::MinC: |
| y_ref[i] = std::min<float>(a_data[i], b); |
| break; |
| case OpType::MulC: |
| y_ref[i] = a_data[i] * b; |
| break; |
| case OpType::SqrDiffC: |
| { |
| const float diff = a_data[i] - b; |
| y_ref[i] = diff * diff; |
| break; |
| } |
| case OpType::SubC: |
| y_ref[i] = a_data[i] - b; |
| break; |
| case OpType::RSubC: |
| y_ref[i] = b - a_data[i]; |
| break; |
| } |
| } |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_max = accumulated_range > 0.0f ? |
| (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) : |
| +std::numeric_limits<float>::infinity(); |
| const float y_min = accumulated_range > 0.0f ? |
| (accumulated_min + accumulated_range / 255.0f * float(qmin())) : |
| -std::numeric_limits<float>::infinity(); |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_minmax_params params; |
| init_params(¶ms, y_min, y_max); |
| |
| // Call optimized micro-kernel. |
| vbinaryc_minmax(batch_size() * sizeof(float), a_data, &b, y.data(), ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| bool inplace_{false}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |