| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <wasm_simd128.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_roundd__wasmsimd_addsub( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (4 * sizeof(float)) == 0); |
| |
| // Mask for the sign bit of a floating-point number. |
| const v128_t vsign_mask = wasm_i32x4_splat(INT32_C(0x80000000)); |
| // Addition of this number to a floating-point number x cause rounding of the result to an integer. Then this magic |
| // number is subtracted back from the result to get original x rounded to integer. This trick works only for |
| // 0 <= x < 2**24, but all numbers in 2**23 <= x < 2**24 range are integers, so we can further restrict it to |
| // 0 <= x < 2**23. Then the upper bound of the validity interval is conveniently the same as the magic number. |
| const v128_t vmagic_number = wasm_f32x4_splat(0x1.000000p+23f); |
| // Unit constant to decrement results rounded "wrong way" (i.e. up) in the round-to-nearest-even operation. |
| const v128_t vone = wasm_f32x4_splat(1.0f); |
| |
| for (; n != 0; n -= 4 * sizeof(float)) { |
| const v128_t vx = wasm_v128_load(input); |
| input += 4; |
| |
| // The rounding trick works only for x >= 0, so we compute absolute value of x, round it, and restore the sign in |
| // the end. This method works for round-to-nearest-even because it is an odd function. |
| const v128_t vabsx = wasm_v128_andnot(vx, vsign_mask); |
| |
| // Compute bitmask for the bits we want to copy from x. Other bits will be copied from the rounded abs(x). |
| // If abs(x) < 2**23 or x is NaN, we want the sign bit from x and the rest from the rounded abs(x). |
| // Otherwise (abs(x) >= 2**23), we want all bits from x. |
| const v128_t vrndmask = wasm_v128_or(vsign_mask, wasm_f32x4_ge(vabsx, vmagic_number)); |
| // Addition-subtraction trick with the magic number to cause rounding to integer for abs(x). |
| // Note: the result is valid only for 0 <= abs(x) < 2**23. |
| // Note: addition-subtraction implicitly converts SNaN inputs to QNaNs. |
| const v128_t vrndabsx = wasm_f32x4_sub(wasm_f32x4_add(vabsx, vmagic_number), vmagic_number); |
| |
| // Combine abs(x) rounded via addition-subtraction trick and the input x value. |
| // For abs(x) < 2**23, the result is abs(x) rounded via addition-subtraction trick with the sign of x. |
| // For NaN inputs, the result is x converted to QNaN as a side-effect of addition-subtraction. |
| // For abs(x) >= 2**23, the result is x itself. |
| const v128_t vrndx = wasm_v128_bitselect(vx, vrndabsx, vrndmask); |
| |
| // Adjust x rounded towards nearest-even to get x rounded down. |
| // Note: subtraction implicitly converts SNaN inputs to QNaNs. |
| const v128_t vy = wasm_f32x4_sub(vrndx, wasm_v128_and(wasm_f32x4_gt(vrndx, vx), vone)); |
| |
| wasm_v128_store(output, vy); |
| output += 4; |
| } |
| } |