| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/requantization.h> |
| |
| |
| class VMulCMicrokernelTester { |
| public: |
| inline VMulCMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline VMulCMicrokernelTester& inplace(bool inplace) { |
| this->inplace_ = inplace; |
| return *this; |
| } |
| |
| inline bool inplace() const { |
| return this->inplace_; |
| } |
| |
| inline VMulCMicrokernelTester& a_scale(float a_scale) { |
| assert(a_scale > 0.0f); |
| assert(std::isnormal(a_scale)); |
| this->a_scale_ = a_scale; |
| return *this; |
| } |
| |
| inline float a_scale() const { |
| return this->a_scale_; |
| } |
| |
| inline VMulCMicrokernelTester& a_zero_point(uint8_t a_zero_point) { |
| this->a_zero_point_ = a_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t a_zero_point() const { |
| return this->a_zero_point_; |
| } |
| |
| inline VMulCMicrokernelTester& b_scale(float b_scale) { |
| assert(b_scale > 0.0f); |
| assert(std::isnormal(b_scale)); |
| this->b_scale_ = b_scale; |
| return *this; |
| } |
| |
| inline float b_scale() const { |
| return this->b_scale_; |
| } |
| |
| inline VMulCMicrokernelTester& b_zero_point(uint8_t b_zero_point) { |
| this->b_zero_point_ = b_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t b_zero_point() const { |
| return this->b_zero_point_; |
| } |
| |
| inline VMulCMicrokernelTester& y_scale(float y_scale) { |
| assert(y_scale > 0.0f); |
| assert(std::isnormal(y_scale)); |
| this->y_scale_ = y_scale; |
| return *this; |
| } |
| |
| inline float y_scale() const { |
| return this->y_scale_; |
| } |
| |
| inline VMulCMicrokernelTester& y_zero_point(uint8_t y_zero_point) { |
| this->y_zero_point_ = y_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t y_zero_point() const { |
| return this->y_zero_point_; |
| } |
| |
| inline VMulCMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline VMulCMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline VMulCMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test( |
| xnn_qu8_vmul_minmax_ukernel_function vmul_minmax, |
| xnn_init_qu8_mul_minmax_params_fn init_params, |
| xnn_init_qu8_requantization_params_fn init_requantization_params, |
| xnn_qu8_requantize_fn requantize) const |
| { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<uint8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0)); |
| std::vector<float> y_fp(batch_size()); |
| std::vector<uint8_t> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(u8rng)); |
| const uint8_t b = u8rng(); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(u8rng)); |
| } else { |
| std::fill(y.begin(), y.end(), 0xA5); |
| } |
| const uint8_t* a_data = inplace() ? y.data() : a.data(); |
| |
| // Prepare parameters. |
| const float product_scale = a_scale() * b_scale(); |
| const float product_output_scale = product_scale / y_scale(); |
| xnn_qu8_mul_minmax_params quantization_params; |
| init_params( |
| &quantization_params, |
| a_zero_point(), b_zero_point(), y_zero_point(), |
| product_output_scale, qmin(), qmax()); |
| union xnn_qu8_requantization_params requantization_params; |
| init_requantization_params(&requantization_params, |
| product_output_scale, y_zero_point(), qmin(), qmax()); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| const int32_t acc = |
| (int32_t(a_data[i]) - int32_t(a_zero_point())) * (int32_t(b) - int32_t(b_zero_point())); |
| y_fp[i] = float(y_zero_point()) + product_output_scale * float(acc); |
| y_fp[i] = std::min<float>(y_fp[i], float(int32_t(qmax()))); |
| y_fp[i] = std::max<float>(y_fp[i], float(int32_t(qmin()))); |
| y_ref[i] = requantize(acc, &requantization_params); |
| } |
| |
| // Call optimized micro-kernel. |
| vmul_minmax(batch_size(), a_data, &b, y.data(), &quantization_params); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_LE(uint32_t(y[i]), uint32_t(qmax())) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_GE(uint32_t(y[i]), uint32_t(qmin())) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_EQ(uint32_t(y[i]), uint32_t(y_ref[i])) |
| << "at element " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test( |
| xnn_qs8_vmul_minmax_ukernel_function vmul_minmax, |
| xnn_init_qs8_mul_minmax_params_fn init_params, |
| xnn_init_qs8_requantization_params_fn init_requantization_params, |
| xnn_qs8_requantize_fn requantize) const |
| { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| rng); |
| |
| std::vector<int8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(int8_t) : 0)); |
| std::vector<float> y_fp(batch_size()); |
| std::vector<int8_t> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(i8rng)); |
| const int8_t b = i8rng(); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(i8rng)); |
| } else { |
| std::fill(y.begin(), y.end(), 0xA5); |
| } |
| const int8_t* a_data = inplace() ? y.data() : a.data(); |
| |
| // Prepare parameters. |
| const float product_scale = a_scale() * b_scale(); |
| const float product_output_scale = product_scale / y_scale(); |
| EXPECT_GE(product_output_scale, 0x1.0p-32f); |
| xnn_qs8_mul_minmax_params quantization_params; |
| init_params( |
| &quantization_params, |
| int8_t(a_zero_point() - 0x80), int8_t(b_zero_point() - 0x80), int8_t(y_zero_point() - 0x80), |
| product_output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| union xnn_qs8_requantization_params requantization_params; |
| init_requantization_params(&requantization_params, |
| product_output_scale, int8_t(y_zero_point() - 0x80), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| const int32_t acc = |
| (int32_t(a_data[i]) - int32_t(a_zero_point() - 0x80)) * (int32_t(b) - int32_t(b_zero_point() - 0x80)); |
| y_fp[i] = float(y_zero_point() - 0x80) + product_output_scale * float(acc); |
| y_fp[i] = std::min<float>(y_fp[i], float(int32_t(qmax() - 0x80))); |
| y_fp[i] = std::max<float>(y_fp[i], float(int32_t(qmin() - 0x80))); |
| y_ref[i] = requantize(acc, &requantization_params); |
| } |
| |
| // Call optimized micro-kernel. |
| vmul_minmax(batch_size(), a_data, &b, y.data(), &quantization_params); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_LE(int32_t(y[i]), int32_t(qmax() - 0x80)) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_GE(int32_t(y[i]), int32_t(qmin() - 0x80)) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_EQ(int32_t(y_ref[i]), int32_t(y[i])) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f) |
| << "at element " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| bool inplace_{false}; |
| float a_scale_{0.75f}; |
| float b_scale_{1.25f}; |
| float y_scale_{0.96875f}; |
| uint8_t a_zero_point_{121}; |
| uint8_t b_zero_point_{127}; |
| uint8_t y_zero_point_{133}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |