blob: a4237f9eb36e98f9d66cbc232633dd9b79697385 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/operator.h>
#include <xnnpack/log.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/params.h>
#include <xnnpack/compute.h>
void xnn_compute_grouped_gemm(
const struct gemm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t group_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t k_scaled = context->k_scaled;
const size_t a_stride = context->a_stride;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
mr_block_size,
nr_block_size,
k_scaled,
(const void*) ((uintptr_t) context->a + mr_block_start * a_stride + group_index * k_scaled),
a_stride,
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride + group_index * context->wg_stride),
(void*) ((uintptr_t) context->c + mr_block_start * cm_stride + (nr_block_start << context->log2_csize) + group_index * context->cg_stride),
cm_stride,
context->cn_stride,
&context->params);
}
void xnn_compute_gemm(
const struct gemm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t a_stride = context->a_stride;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
mr_block_size,
nr_block_size,
context->k_scaled,
(const void*) ((uintptr_t) context->a + mr_block_start * a_stride),
a_stride,
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride),
(void*) ((uintptr_t) context->c + mr_block_start * cm_stride + (nr_block_start << context->log2_csize)),
cm_stride,
context->cn_stride,
&context->params);
}
void xnn_compute_spmm(
const struct spmm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t mr_block_start,
size_t mr_block_size)
{
context->ukernel(
mr_block_size,
context->n,
(const void*) ((uintptr_t) context->a + batch_index * context->batched_a_stride + mr_block_start * sizeof(float)),
context->packed_weights,
context->input_increments,
context->output_channel_nonzeros,
(void*) ((uintptr_t) context->c + batch_index * context->batched_c_stride + mr_block_start * sizeof(float)),
&context->params);
}
void xnn_compute_grouped_igemm(
const struct igemm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t group_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t ks = context->ks;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
mr_block_size,
nr_block_size,
context->kc,
context->ks_scaled,
(const void**) ((uintptr_t) context->indirect_a + mr_block_start * ks * sizeof(void*)),
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride + group_index * context->gw_stride),
(void*) ((uintptr_t) context->c + group_index * context->gc_stride + batch_index * context->bc_stride + mr_block_start * cm_stride + (nr_block_start << context->log2_csize)),
cm_stride,
context->cn_stride,
context->a_offset + group_index * context->ga_stride + batch_index * context->ba_stride,
context->zero,
&context->params);
}
void xnn_compute_igemm(
const struct igemm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t ks = context->ks;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
mr_block_size,
nr_block_size,
context->kc,
context->ks_scaled,
(const void**) ((uintptr_t) context->indirect_a + mr_block_start * ks * sizeof(void*)),
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride),
(void*) ((uintptr_t) context->c + batch_index * context->bc_stride + mr_block_start * cm_stride + (nr_block_start << context->log2_csize)),
cm_stride,
context->cn_stride,
context->a_offset + batch_index * context->ba_stride,
context->zero,
&context->params);
}
void xnn_compute_grouped_subgemm2d(
const struct subgemm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t group_index,
size_t subkernel_index,
size_t slice_y,
size_t slice_x_start,
size_t nc_block_start,
size_t slice_x_max,
size_t nc_block_size)
{
const struct subconvolution_params* subconvolution_params = &context->subconvolution_params[subkernel_index];
if XNN_UNLIKELY(slice_y >= subconvolution_params->slice_height) {
return;
}
const size_t slice_width = subconvolution_params->slice_width;
if XNN_UNLIKELY(slice_x_start >= slice_width) {
return;
}
const size_t slice_x_size = min(slice_x_max, slice_width - slice_x_start);
const size_t ax_stride = context->ax_stride;
const size_t cx_stride = context->cx_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
slice_x_size,
nc_block_size,
context->kc,
(const void*) ((uintptr_t) context->a + group_index * context->ga_stride + slice_y * context->ay_stride + slice_x_start * ax_stride + batch_index * context->ba_stride),
ax_stride,
(const void*) ((uintptr_t) subconvolution_params->weights + nc_block_start * subconvolution_params->w_stride + group_index * context->gw_stride),
(void*) ((uintptr_t) subconvolution_params->output + group_index * context->gc_stride + slice_y * context->cy_stride + slice_x_start * cx_stride + batch_index * context->bc_stride + (nc_block_start << context->log2_csize)),
cx_stride,
context->cn_stride,
&context->params);
}
void xnn_compute_subgemm2d(
const struct subgemm_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t subkernel_index,
size_t slice_y,
size_t slice_x_start,
size_t nc_block_start,
size_t slice_x_max,
size_t nc_block_size)
{
const struct subconvolution_params* subconvolution_params = &context->subconvolution_params[subkernel_index];
if XNN_UNLIKELY(slice_y >= subconvolution_params->slice_height) {
return;
}
const size_t slice_width = subconvolution_params->slice_width;
if XNN_UNLIKELY(slice_x_start >= slice_width) {
return;
}
const size_t slice_x_size = min(slice_x_max, slice_width - slice_x_start);
const size_t ax_stride = context->ax_stride;
const size_t cx_stride = context->cx_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
slice_x_size,
nc_block_size,
context->kc,
(const void*) ((uintptr_t) context->a + slice_y * context->ay_stride + slice_x_start * ax_stride + batch_index * context->ba_stride),
ax_stride,
(const void*) ((uintptr_t) subconvolution_params->weights + nc_block_start * subconvolution_params->w_stride),
(void*) ((uintptr_t) subconvolution_params->output + slice_y * context->cy_stride + slice_x_start * cx_stride + batch_index * context->bc_stride + (nc_block_start << context->log2_csize)),
cx_stride,
context->cn_stride,
&context->params);
}
void xnn_compute_grouped_subconv2d(
const struct subconv_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t group_index,
size_t subkernel_index,
size_t slice_y,
size_t slice_x_start,
size_t nc_block_start,
size_t slice_x_max,
size_t nc_block_size)
{
const struct subconvolution_params* subconvolution_params = &context->subconvolution_params[subkernel_index];
if XNN_UNLIKELY(slice_y >= subconvolution_params->slice_height) {
return;
}
const size_t slice_width = subconvolution_params->slice_width;
if XNN_UNLIKELY(slice_x_start >= slice_width) {
return;
}
const size_t slice_x_size = min(slice_x_max, slice_width - slice_x_start);
const size_t cx_stride = context->cx_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
slice_x_size,
nc_block_size,
context->kc,
subconvolution_params->scaled_kernel_size,
(const void**) ((uintptr_t) subconvolution_params->indirection_buffer + slice_y * subconvolution_params->indirection_y_stride + slice_x_start * subconvolution_params->indirection_x_stride),
(const void*) ((uintptr_t) subconvolution_params->weights + nc_block_start * subconvolution_params->w_stride + group_index * context->gw_stride),
(void*) ((uintptr_t) subconvolution_params->output + group_index * context->gc_stride + slice_y * context->cy_stride + slice_x_start * cx_stride + batch_index * context->bc_stride + (nc_block_start << context->log2_csize)),
cx_stride,
context->cn_stride,
context->a_offset + group_index * context->ga_stride + batch_index * context->ba_stride,
context->zero,
&context->params);
}
void xnn_compute_subconv2d(
const struct subconv_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t subkernel_index,
size_t slice_y,
size_t slice_x_start,
size_t nc_block_start,
size_t slice_x_max,
size_t nc_block_size)
{
const struct subconvolution_params* subconvolution_params = &context->subconvolution_params[subkernel_index];
if XNN_UNLIKELY(slice_y >= subconvolution_params->slice_height) {
return;
}
const size_t slice_width = subconvolution_params->slice_width;
if XNN_UNLIKELY(slice_x_start >= slice_width) {
return;
}
const size_t slice_x_size = min(slice_x_max, slice_width - slice_x_start);
const size_t cx_stride = context->cx_stride;
context->ukernel.function[XNN_UARCH_DEFAULT](
slice_x_size,
nc_block_size,
context->kc,
subconvolution_params->scaled_kernel_size,
(const void**) ((uintptr_t) subconvolution_params->indirection_buffer + slice_y * subconvolution_params->indirection_y_stride + slice_x_start * subconvolution_params->indirection_x_stride),
(const void*) ((uintptr_t) subconvolution_params->weights + nc_block_start * subconvolution_params->w_stride),
(void*) ((uintptr_t) subconvolution_params->output + slice_y * context->cy_stride + slice_x_start * cx_stride + batch_index * context->bc_stride + (nc_block_start << context->log2_csize)),
cx_stride,
context->cn_stride,
context->a_offset + batch_index * context->ba_stride,
context->zero,
&context->params);
}
void xnn_compute_conv2d_hwc2chw(
const struct conv2d_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y_start,
size_t output_y_slice)
{
context->hwc2chw_ukernel(
context->input_height,
context->input_width,
output_y_start,
output_y_start + output_y_slice,
(const void*) ((uintptr_t) context->input + batch_index * context->input_batch_stride),
context->zero,
context->packed_weights,
(void*) ((uintptr_t) context->output + batch_index * context->output_batch_stride),
context->input_padding_top,
context->output_channels,
context->output_height_stride,
context->output_channel_stride,
&context->params);
}
void xnn_compute_dwconv_unipass(
const struct dwconv_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t output_y)
{
context->unipass_ukernel(
context->groups,
context->output_width,
context->indirection_buffer + output_y * context->indirection_buffer_row_stride,
context->packed_weights,
(void*) ((uintptr_t) context->output + output_y * context->output_row_stride),
context->indirection_buffer_col_stride,
context->output_col_increment,
context->input_offset,
context->zero,
&context->params);
}
void xnn_compute_dwconv2d_chw(
const struct dwconv2d_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t channel)
{
context->chw_ukernel(
context->input_height,
context->input_width,
(const void*) ((uintptr_t) context->input + channel * context->input_channel_stride + batch_index * context->input_batch_stride),
(const void*) ((uintptr_t) context->packed_weights + channel * context->weights_channel_stride),
context->zero,
(void*) ((uintptr_t) context->output + channel * context->output_channel_stride + batch_index * context->output_batch_stride),
context->input_padding_top,
context->input_tuple_stride,
context->output_tuple_stride,
context->input_pixel_stride,
context->output_pixel_stride,
&context->params);
}
void xnn_compute_argmax_pooling_unipass(
const struct argmax_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input = (const void**) ((uintptr_t) context->indirect_input +
output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
uint32_t* index = (uint32_t*) ((uintptr_t) context->index +
batch_index * context->index_batch_stride + output_y * context->index_height_stride);
context->unipass_ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, output, index,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_argmax_pooling_multipass(
const struct argmax_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input = (const void**) ((uintptr_t) context->indirect_input +
output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
uint32_t* index = (uint32_t*) ((uintptr_t) context->index +
batch_index * context->index_batch_stride + output_y * context->index_height_stride);
void* multipass_accumulation_buffer = XNN_SIMD_ALLOCA(context->channels * sizeof(float) + XNN_EXTRA_BYTES);
void* multipass_index_buffer = XNN_SIMD_ALLOCA(context->channels * sizeof(uint32_t) + XNN_EXTRA_BYTES);
context->multipass_ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, multipass_accumulation_buffer, multipass_index_buffer, output, index,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_max_pooling(
const struct max_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input = (const void**) ((uintptr_t) context->indirect_input +
output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
context->ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, output,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_unpooling(
const struct unpooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t input_y,
size_t input_x)
{
const void* input = (const void*) ((uintptr_t) context->input +
input_y * context->input_height_stride + input_x * context->input_width_stride);
const uint32_t* index = (const uint32_t*) ((uintptr_t) context->index +
input_y * context->index_height_stride + input_x * context->index_width_stride);
void** indirect_output =
(void**) ((uintptr_t) context->indirect_output +
input_y * context->indirect_output_height_stride + input_x * context->indirect_output_width_stride);
context->ukernel(
context->pooling_size,
context->channels,
context->fill_value,
input, index, indirect_output);
}
void xnn_compute_average_pooling_unipass(
const struct average_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input =
(const void**) ((uintptr_t) context->indirect_input + output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
context->unipass_ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, context->zero, output,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_average_pooling_multipass(
const struct average_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input =
(const void**) ((uintptr_t) context->indirect_input + output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
void* multipass_buffer =
XNN_SIMD_ALLOCA(context->channels * sizeof(int32_t) + XNN_EXTRA_BYTES * sizeof(int32_t) / sizeof(uint8_t));
context->multipass_ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, context->zero, multipass_buffer, output,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_pixelwise_average_pooling_unipass(
const struct pixelwise_average_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input =
(const void**) ((uintptr_t) context->indirect_input + output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
const void* pixelwise_buffer =
(const void*) ((uintptr_t) context->pixelwise_buffer + output_y * context->pixelwise_buffer_height_stride);
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
context->unipass_ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, context->zero, pixelwise_buffer, output,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_pixelwise_average_pooling_multipass(
const struct pixelwise_average_pooling_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t output_y)
{
const void** indirect_input =
(const void**) ((uintptr_t) context->indirect_input + output_y * context->indirect_input_height_stride);
const size_t input_offset = context->input_offset + batch_index * context->input_batch_stride;
const void* pixelwise_buffer =
(const void*) ((uintptr_t) context->pixelwise_buffer + output_y * context->pixelwise_buffer_height_stride);
void* output = (void*) ((uintptr_t) context->output +
batch_index * context->output_batch_stride + output_y * context->output_height_stride);
void* multipass_buffer = XNN_SIMD_ALLOCA(context->channels * sizeof(int32_t) + XNN_EXTRA_BYTES * sizeof(int32_t) / sizeof(uint8_t));
context->multipass_ukernel(
context->output_width, context->pooling_size, context->channels,
indirect_input, input_offset, context->zero, pixelwise_buffer, multipass_buffer, output,
context->input_increment, context->output_increment,
&context->params);
}
void xnn_compute_global_average_pooling_nwc_unipass(
const struct global_average_pooling_nwc_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index)
{
const void* input =
(const void*) ((uintptr_t) context->input + batch_index * context->input_batch_stride);
void* output =
(void*) ((uintptr_t) context->output + batch_index * context->output_batch_stride);
context->unipass_ukernel(
context->input_elements,
context->channels,
input,
context->input_pixel_stride,
context->zero,
output,
&context->params);
}
void xnn_compute_global_average_pooling_nwc_multipass(
const struct global_average_pooling_nwc_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index)
{
const void* input =
(const void*) ((uintptr_t) context->input + batch_index * context->input_batch_stride);
void* output =
(void*) ((uintptr_t) context->output + batch_index * context->output_batch_stride);
void* multipass_buffer =
XNN_SIMD_ALLOCA(context->channels * sizeof(int32_t) + XNN_EXTRA_BYTES * sizeof(int32_t) / sizeof(uint8_t));
context->multipass_ukernel(
context->input_elements,
context->channels,
input,
context->input_pixel_stride,
context->zero,
multipass_buffer,
output,
&context->params);
}
void xnn_compute_global_average_pooling_ncw(
const struct global_average_pooling_ncw_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t channels_start,
size_t channels_slice)
{
const void* input = (const void*) ((uintptr_t) context->input +
channels_start * context->input_channel_stride + batch_index * context->input_batch_stride);
void* output = (void*) ((uintptr_t) context->output +
channels_start * context->output_channel_stride + batch_index * context->output_batch_stride);
context->ukernel(
context->input_elements,
channels_slice,
input,
output,
&context->params);
}
void xnn_compute_resize_bilinear(
const struct resize_bilinear_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t pixel_start,
size_t pixel_range)
{
void* output =
(void*) ((uintptr_t) context->output + pixel_start * context->output_pixel_stride + batch_index * context->output_batch_stride);
context->ukernel(
pixel_range,
context->scaled_channels,
context->indirect_input + pixel_start * 4,
context->input_offset + batch_index * context->input_batch_stride,
(const void*) ((uintptr_t) context->packed_weights + (pixel_start << context->log2_wsize)),
output,
context->output_pixel_stride - context->scaled_channels);
}
void xnn_compute_prelu(
const struct prelu_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_start,
size_t batch_range)
{
const size_t x_stride = context->x_stride;
const size_t y_stride = context->y_stride;
const void* x = (const void*) ((uintptr_t) context->x + x_stride * batch_start);
void* y = (void*) ((uintptr_t) context->y + y_stride * batch_start);
context->ukernel(batch_range, context->n, x, x_stride, context->w, y, y_stride);
}
void xnn_compute_pad_5d(
const struct pad_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t i, size_t j, size_t k, size_t l, size_t m,
size_t l_range, size_t m_range)
{
assert(l_range == 1);
assert(m_range == 1);
const void* input = (const void*) ((uintptr_t) context->input +
i * context->input_stride[4] + j * context->input_stride[3] + k * context->input_stride[2] + l * context->input_stride[1] + m * context->input_stride[0]);
void* output = (void*) ((uintptr_t) context->output +
i * context->output_stride[4] + j * context->output_stride[3] + k * context->output_stride[2] + l * context->output_stride[1] + m * context->output_stride[0]);
const size_t i_padding = context->pre_paddings[5];
const size_t j_padding = context->pre_paddings[4];
const size_t k_padding = context->pre_paddings[3];
const size_t l_padding = context->pre_paddings[2];
const size_t m_padding = context->pre_paddings[1];
const size_t i_size = context->input_size[5];
const size_t j_size = context->input_size[4];
const size_t k_size = context->input_size[3];
const size_t l_size = context->input_size[2];
const size_t m_size = context->input_size[1];
if XNN_LIKELY(i - i_padding < i_size && j - j_padding < j_size && k - k_padding < k_size &&
l - l_padding < l_size && m - m_padding < m_size)
{
context->pad_ukernel(
1 /* rows */,
context->input_size[0], context->pre_paddings[0], context->post_paddings[0],
&context->padding_value,
input, 0 /* input stride */, output, 0 /* output stride */);
} else {
context->fill_ukernel(1 /* rows */, context->output_size[0], output, 0 /* output stride */, &context->padding_value);
}
}
void xnn_compute_channel_pad(
const struct channel_pad_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_start,
size_t batch_range)
{
const size_t x_stride = context->x_stride;
const size_t y_stride = context->y_stride;
const void* x = (const void*) ((uintptr_t) context->x + x_stride * batch_start);
void* y = (void*) ((uintptr_t) context->y + y_stride * batch_start);
context->ukernel(batch_range, context->n, context->l, context->r, &context->c, x, x_stride, y, y_stride);
}
void xnn_compute_elementwise_binary_5d(
const struct elementwise_binary_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t i, size_t j, size_t k, size_t l, size_t m,
size_t l_range, size_t m_range)
{
assert(l_range == 1);
assert(m_range == 1);
const void* a = (const void*) ((uintptr_t) context->a +
i * context->a_stride[0] + j * context->a_stride[1] + k * context->a_stride[2] + l * context->a_stride[3] + m * context->a_stride[4]);
const void* b = (const void*) ((uintptr_t) context->b +
i * context->b_stride[0] + j * context->b_stride[1] + k * context->b_stride[2] + l * context->b_stride[3] + m * context->b_stride[4]);
void* y = (void*) ((uintptr_t) context->y +
i * context->y_stride[0] + j * context->y_stride[1] + k * context->y_stride[2] + l * context->y_stride[3] + m * context->y_stride[4]);
context->ukernel(context->elements, a, b, y, &context->params);
}
void xnn_compute_channel_shuffle_fixed(
const struct channel_shuffle_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t index)
{
const void* x = (const void*) ((uintptr_t) context->x + index * context->x_stride);
void* y = (void*) ((uintptr_t) context->y + index * context->y_stride);
context->fixed_ukernel(context->n, x, y);
}
void xnn_compute_channel_shuffle_variable(
const struct channel_shuffle_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t index)
{
const void* x = (const void*) ((uintptr_t) context->x + index * context->x_stride);
void* y = (void*) ((uintptr_t) context->y + index * context->y_stride);
context->variable_ukernel(context->n, context->m, x, y);
}
void xnn_compute_lut_strided(
const struct lut_strided_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index)
{
const void* x = (const void*) ((uintptr_t) context->x + context->x_stride * batch_index);
void* y = (void*) ((uintptr_t) context->y + context->y_stride * batch_index);
context->ukernel(context->n, x, context->t, y);
}
void xnn_compute_lut_contiguous(
const struct lut_contiguous_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t offset,
size_t size)
{
const void* x = (const void*) ((uintptr_t) context->x + offset);
void* y = (void*) ((uintptr_t) context->y + offset);
context->ukernel(size, x, context->t, y);
}
void xnn_compute_univector_strided(
const struct univector_strided_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index,
size_t batch_range /* always 1 */)
{
assert(batch_range == 1);
const void* x = (const void*) ((uintptr_t) context->x + context->x_stride * batch_index);
void* y = (void*) ((uintptr_t) context->y + context->y_stride * batch_index);
context->ukernel(context->n, x, y, &context->params);
}
void xnn_compute_univector_contiguous(
const struct univector_contiguous_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t offset,
size_t size)
{
const void* x = (const void*) ((uintptr_t) context->x + offset);
void* y = (void*) ((uintptr_t) context->y + offset);
context->ukernel(size, x, y, &context->params);
}
void xnn_compute_u8_softmax(
const struct u8_softmax_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index)
{
const uint8_t* x = (const uint8_t*) ((uintptr_t) context->x + context->x_stride * batch_index);
uint8_t* y = (uint8_t*) ((uintptr_t) context->y + context->y_stride * batch_index);
const size_t n = context->n;
uint8_t x_max = 0;
context->rmax_ukernel(n, x, &x_max);
const size_t adjustment = x_max ^ 255;
const uint32_t* t = (const uint32_t*) context->t + adjustment;
context->lut_norm_ukernel(n, x, t, y);
}
void xnn_compute_f32_three_pass_softmax(
const struct f32_three_pass_softmax_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_index)
{
const float* x = (const float*) ((uintptr_t) context->x + context->x_stride * batch_index);
float* y = (float*) ((uintptr_t) context->y + context->y_stride * batch_index);
const size_t n = context->n;
// First pass: reduce-max
float x_max;
context->rmax_ukernel(n, x, &x_max);
// Second pass: reduce-add & store exp(x-x_max)
float y_sum;
context->raddstoreexpminusmax_ukernel(n, x, y, &y_sum, x_max);
// Third pass: scale y
const float y_scale = 1.0f / y_sum;
context->vmulc_ukernel(n, y, &y_scale, y, &context->params);
}
void xnn_compute_vmulcaddc(
const struct vmulcaddc_context context[restrict XNN_MIN_ELEMENTS(1)],
size_t batch_start,
size_t batch_size)
{
const size_t x_stride = context->x_stride;
const size_t y_stride = context->y_stride;
const void* x = (const void*) ((uintptr_t) context->x + x_stride * batch_start);
void* y = (void*) ((uintptr_t) context->y + y_stride * batch_start);
context->ukernel(
batch_size,
context->n,
x, x_stride,
context->w,
y, y_stride,
&context->params);
}
#if XNN_MAX_UARCH_TYPES > 1
void xnn_compute_hmp_grouped_gemm(
const struct gemm_context context[restrict XNN_MIN_ELEMENTS(1)],
uint32_t uarch_index,
size_t group_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t k_scaled = context->k_scaled;
const size_t a_stride = context->a_stride;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[uarch_index](
mr_block_size,
nr_block_size,
k_scaled,
(const void*) ((uintptr_t) context->a + mr_block_start * a_stride + group_index * k_scaled),
a_stride,
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride + group_index * context->wg_stride),
(void*) ((uintptr_t) context->c + mr_block_start * cm_stride + (nr_block_start << context->log2_csize) + group_index * context->cg_stride),
cm_stride,
context->cn_stride,
&context->params);
}
void xnn_compute_hmp_gemm(
const struct gemm_context context[restrict XNN_MIN_ELEMENTS(1)],
uint32_t uarch_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t a_stride = context->a_stride;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[uarch_index](
mr_block_size,
nr_block_size,
context->k_scaled,
(const void*) ((uintptr_t) context->a + mr_block_start * a_stride),
a_stride,
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride),
(void*) ((uintptr_t) context->c + mr_block_start * cm_stride + (nr_block_start << context->log2_csize)),
cm_stride,
context->cn_stride,
&context->params);
}
void xnn_compute_hmp_grouped_igemm(
const struct igemm_context context[restrict XNN_MIN_ELEMENTS(1)],
uint32_t uarch_index,
size_t batch_index,
size_t group_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t ks = context->ks;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[uarch_index](
mr_block_size,
nr_block_size,
context->kc,
context->ks_scaled,
(const void**) ((uintptr_t) context->indirect_a + mr_block_start * ks * sizeof(void*)),
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride + group_index * context->gw_stride),
(void*) ((uintptr_t) context->c + group_index * context->gc_stride + batch_index * context->bc_stride + mr_block_start * cm_stride + (nr_block_start << context->log2_csize)),
cm_stride,
context->cn_stride,
context->a_offset + group_index * context->ga_stride + batch_index * context->ba_stride,
context->zero,
&context->params);
}
void xnn_compute_hmp_igemm(
const struct igemm_context context[restrict XNN_MIN_ELEMENTS(1)],
uint32_t uarch_index,
size_t batch_index,
size_t mr_block_start,
size_t nr_block_start,
size_t mr_block_size,
size_t nr_block_size)
{
const size_t ks = context->ks;
const size_t cm_stride = context->cm_stride;
context->ukernel.function[uarch_index](
mr_block_size,
nr_block_size,
context->kc,
context->ks_scaled,
(const void**) ((uintptr_t) context->indirect_a + mr_block_start * ks * sizeof(void*)),
(const void*) ((uintptr_t) context->packed_w + nr_block_start * context->w_stride),
(void*) ((uintptr_t) context->c + batch_index * context->bc_stride + mr_block_start * cm_stride + (nr_block_start << context->log2_csize)),
cm_stride,
context->cn_stride,
context->a_offset + batch_index * context->ba_stride,
context->zero,
&context->params);
}
#endif // XNN_MAX_UARCH_TYPES > 1
enum xnn_status xnn_run_operator(xnn_operator_t op, pthreadpool_t threadpool)
{
if (!xnn_params.initialized) {
xnn_log_error("failed to run operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
switch (op->state) {
case xnn_run_state_invalid:
xnn_log_error("failed to run operator: operator was not successfully setup");
return xnn_status_invalid_state;
case xnn_run_state_ready:
break;
case xnn_run_state_skip:
return xnn_status_success;
}
switch (op->compute.type) {
case xnn_parallelization_type_invalid:
break;
case xnn_parallelization_type_1d:
assert(op->compute.range[0] != 0);
pthreadpool_parallelize_1d(
threadpool,
op->compute.task_1d,
&op->context,
op->compute.range[0],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_1d_tile_1d:
assert(op->compute.range[0] != 0);
assert(op->compute.tile[0] != 0);
pthreadpool_parallelize_1d_tile_1d(
threadpool,
op->compute.task_1d_tile_1d,
&op->context,
op->compute.range[0],
op->compute.tile[0],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_2d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
pthreadpool_parallelize_2d(
threadpool,
op->compute.task_2d,
&op->context,
op->compute.range[0], op->compute.range[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_2d_tile_1d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.tile[0] != 0);
pthreadpool_parallelize_2d_tile_1d(
threadpool,
op->compute.task_2d_tile_1d,
&op->context,
op->compute.range[0], op->compute.range[1],
op->compute.tile[0],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_2d_tile_2d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_2d_tile_2d(
threadpool,
op->compute.task_2d_tile_2d,
&op->context,
op->compute.range[0], op->compute.range[1],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_3d_tile_2d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.range[2] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_3d_tile_2d(
threadpool,
op->compute.task_3d_tile_2d,
&op->context,
op->compute.range[0], op->compute.range[1], op->compute.range[2],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_4d_tile_2d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.range[2] != 0);
assert(op->compute.range[3] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_4d_tile_2d(
threadpool,
op->compute.task_4d_tile_2d,
&op->context,
op->compute.range[0], op->compute.range[1], op->compute.range[2], op->compute.range[3],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_5d_tile_2d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.range[2] != 0);
assert(op->compute.range[3] != 0);
assert(op->compute.range[4] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_5d_tile_2d(
threadpool,
op->compute.task_5d_tile_2d,
&op->context,
op->compute.range[0], op->compute.range[1], op->compute.range[2], op->compute.range[3], op->compute.range[4],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_6d_tile_2d:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.range[2] != 0);
assert(op->compute.range[3] != 0);
assert(op->compute.range[4] != 0);
assert(op->compute.range[5] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_6d_tile_2d(
threadpool,
op->compute.task_6d_tile_2d,
&op->context,
op->compute.range[0], op->compute.range[1], op->compute.range[2], op->compute.range[3], op->compute.range[4], op->compute.range[5],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
#if XNN_MAX_UARCH_TYPES > 1
case xnn_parallelization_type_2d_tile_2d_with_uarch:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_2d_tile_2d_with_uarch(
threadpool,
op->compute.task_2d_tile_2d_with_id,
&op->context,
0 /* default uarch index */, XNN_MAX_UARCH_TYPES - 1,
op->compute.range[0], op->compute.range[1],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_3d_tile_2d_with_uarch:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.range[2] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_3d_tile_2d_with_uarch(
threadpool,
op->compute.task_3d_tile_2d_with_id,
&op->context,
0 /* default uarch index */, XNN_MAX_UARCH_TYPES - 1,
op->compute.range[0], op->compute.range[1], op->compute.range[2],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
case xnn_parallelization_type_4d_tile_2d_with_uarch:
assert(op->compute.range[0] != 0);
assert(op->compute.range[1] != 0);
assert(op->compute.range[2] != 0);
assert(op->compute.range[3] != 0);
assert(op->compute.tile[0] != 0);
assert(op->compute.tile[1] != 0);
pthreadpool_parallelize_4d_tile_2d_with_uarch(
threadpool,
op->compute.task_4d_tile_2d_with_id,
&op->context,
0 /* default uarch index */, XNN_MAX_UARCH_TYPES - 1,
op->compute.range[0], op->compute.range[1], op->compute.range[2], op->compute.range[3],
op->compute.tile[0], op->compute.tile[1],
PTHREADPOOL_FLAG_DISABLE_DENORMALS /* flags */);
break;
#endif // XNN_MAX_UARCH_TYPES > 1
default:
XNN_UNREACHABLE;
}
return xnn_status_success;
}