| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| class VBinOpMicrokernelTester { |
| public: |
| enum class OpType { |
| Add, |
| Div, |
| Max, |
| Min, |
| Mul, |
| Sub, |
| }; |
| |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline VBinOpMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline VBinOpMicrokernelTester& inplace_a(bool inplace_a) { |
| this->inplace_a_ = inplace_a; |
| return *this; |
| } |
| |
| inline bool inplace_a() const { |
| return this->inplace_a_; |
| } |
| |
| inline VBinOpMicrokernelTester& inplace_b(bool inplace_b) { |
| this->inplace_b_ = inplace_b; |
| return *this; |
| } |
| |
| inline bool inplace_b() const { |
| return this->inplace_b_; |
| } |
| |
| inline VBinOpMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline VBinOpMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline VBinOpMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f32_vbinary_ukernel_function vbinary, OpType op_type, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng); |
| |
| std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f32rng)); |
| std::generate(b.begin(), b.end(), std::ref(f32rng)); |
| if (inplace_a() || inplace_b()) { |
| std::generate(y.begin(), y.end(), std::ref(f32rng)); |
| } else { |
| std::fill(y.begin(), y.end(), nanf("")); |
| } |
| const float* a_data = inplace_a() ? y.data() : a.data(); |
| const float* b_data = inplace_b() ? y.data() : b.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::Add: |
| y_ref[i] = a_data[i] + b_data[i]; |
| break; |
| case OpType::Div: |
| y_ref[i] = a_data[i] / b_data[i]; |
| break; |
| case OpType::Max: |
| y_ref[i] = std::max<float>(a_data[i], b_data[i]); |
| break; |
| case OpType::Min: |
| y_ref[i] = std::min<float>(a_data[i], b_data[i]); |
| break; |
| case OpType::Mul: |
| y_ref[i] = a_data[i] * b_data[i]; |
| break; |
| case OpType::Sub: |
| y_ref[i] = a_data[i] - b_data[i]; |
| break; |
| } |
| } |
| |
| // Call optimized micro-kernel. |
| vbinary(batch_size() * sizeof(float), a_data, b_data, y.data(), nullptr); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_f32_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng); |
| |
| std::vector<float> a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> b(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(f32rng)); |
| std::generate(b.begin(), b.end(), std::ref(f32rng)); |
| if (inplace_a() || inplace_b()) { |
| std::generate(y.begin(), y.end(), std::ref(f32rng)); |
| } else { |
| std::fill(y.begin(), y.end(), nanf("")); |
| } |
| const float* a_data = inplace_a() ? y.data() : a.data(); |
| const float* b_data = inplace_b() ? y.data() : b.data(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| switch (op_type) { |
| case OpType::Add: |
| y_ref[i] = a_data[i] + b_data[i]; |
| break; |
| case OpType::Div: |
| y_ref[i] = a_data[i] / b_data[i]; |
| break; |
| case OpType::Max: |
| y_ref[i] = std::max<float>(a_data[i], b_data[i]); |
| break; |
| case OpType::Min: |
| y_ref[i] = std::min<float>(a_data[i], b_data[i]); |
| break; |
| case OpType::Mul: |
| y_ref[i] = a_data[i] * b_data[i]; |
| break; |
| case OpType::Sub: |
| y_ref[i] = a_data[i] - b_data[i]; |
| break; |
| } |
| } |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_max = accumulated_range > 0.0f ? |
| (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) : |
| +std::numeric_limits<float>::infinity(); |
| const float y_min = accumulated_range > 0.0f ? |
| (accumulated_min + accumulated_range / 255.0f * float(qmin())) : |
| -std::numeric_limits<float>::infinity(); |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_ref[i] = std::max<float>(std::min<float>(y_ref[i], y_max), y_min); |
| } |
| |
| // Prepare output parameters. |
| xnn_f32_minmax_params minmax_params = { }; |
| switch (variant) { |
| case Variant::Native: |
| minmax_params = xnn_init_f32_minmax_params(y_min, y_max); |
| break; |
| case Variant::Scalar: |
| minmax_params = xnn_init_scalar_f32_minmax_params(y_min, y_max); |
| break; |
| } |
| |
| // Call optimized micro-kernel. |
| vbinary_minmax(batch_size() * sizeof(float), a_data, b_data, y.data(), &minmax_params); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| bool inplace_a_{false}; |
| bool inplace_b_{false}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |