| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #if defined(__cplusplus) && (__cplusplus >= 201103L) |
| #include <cstdint> |
| #include <cstddef> |
| #include <cassert> |
| #include <cmath> |
| #else |
| #include <stdint.h> |
| #include <stddef.h> |
| #include <assert.h> |
| #include <math.h> |
| #endif |
| |
| #include <fp16.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/params.h> |
| |
| |
| static inline union xnn_q8_gemm_params xnn_init_scalar_q8_gemm_params( |
| uint8_t input_zero_point, |
| uint8_t kernel_zero_point, |
| float scale, |
| uint8_t output_zero_point, |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| // Compute requantization parameters |
| const uint32_t scale_bits = fp32_to_bits(scale); |
| |
| // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| assert(multiplier >= INT32_C(0x40000000)); |
| assert(multiplier <= INT32_C(0x7FFFFF80)); |
| |
| // Shift is in [0, 31] range. |
| const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| assert(shift >= 0); |
| assert(shift < 32); |
| |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| |
| union xnn_q8_gemm_params params; |
| params.scalar.input_zero_point = (int32_t) (uint32_t) input_zero_point; |
| params.scalar.kernel_zero_point = (int32_t) (uint32_t) kernel_zero_point; |
| params.scalar.multiplier = multiplier; |
| params.scalar.remainder_mask = (int32_t) remainder_mask; |
| params.scalar.remainder_threshold = (int32_t) remainder_threshold; |
| params.scalar.shift = (uint32_t) shift; |
| params.scalar.output_min_less_zero_point = |
| (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_max_less_zero_point = |
| (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
| return params; |
| } |
| |
| static inline union xnn_q8_gemm_params xnn_init_q8_gemm_params( |
| uint8_t input_zero_point, |
| uint8_t kernel_zero_point, |
| float scale, |
| uint8_t output_zero_point, |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| // Compute requantization parameters. |
| const uint32_t scale_bits = fp32_to_bits(scale); |
| |
| // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| assert(multiplier >= INT32_C(0x40000000)); |
| assert(multiplier <= INT32_C(0x7FFFFF80)); |
| |
| // Shift is in [0, 31] range. |
| const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| assert(shift >= 0); |
| assert(shift < 32); |
| |
| union xnn_q8_gemm_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| for (uint32_t i = 0; i < 8; i++) { |
| params.sse2.input_zero_point[i] = (int16_t) (uint16_t) input_zero_point; |
| params.sse2.kernel_zero_point[i] = (int16_t) (uint16_t) kernel_zero_point; |
| } |
| params.sse2.multiplier[0] = multiplier; |
| params.sse2.multiplier[1] = multiplier; |
| params.sse2.multiplier[2] = multiplier; |
| params.sse2.multiplier[3] = multiplier; |
| params.sse2.rounding[0] = UINT64_C(0x40000000); |
| params.sse2.rounding[1] = UINT64_C(0x40000000); |
| params.sse2.remainder_mask[0] = (int32_t) remainder_mask; |
| params.sse2.remainder_mask[1] = (int32_t) remainder_mask; |
| params.sse2.remainder_mask[2] = (int32_t) remainder_mask; |
| params.sse2.remainder_mask[3] = (int32_t) remainder_mask; |
| params.sse2.remainder_threshold[0] = (int32_t) remainder_threshold; |
| params.sse2.remainder_threshold[1] = (int32_t) remainder_threshold; |
| params.sse2.remainder_threshold[2] = (int32_t) remainder_threshold; |
| params.sse2.remainder_threshold[3] = (int32_t) remainder_threshold; |
| params.sse2.shift[0] = (uint64_t) (uint32_t) shift; |
| params.sse2.shift[1] = (uint64_t) (uint32_t) shift; |
| for (uint32_t i = 0; i < 8; i++) { |
| params.sse2.output_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
| } |
| for (uint32_t i = 0; i < 16; i++) { |
| params.sse2.output_min[i] = output_min; |
| params.sse2.output_max[i] = output_max; |
| } |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.input_zero_point = (int16_t) (uint16_t) input_zero_point; |
| params.neon.kernel_zero_point = (int16_t) (uint16_t) kernel_zero_point; |
| params.neon.multiplier = multiplier; |
| params.neon.right_shift = -shift; |
| params.neon.output_zero_point = (int16_t) (uint16_t) output_zero_point; |
| params.neon.output_min = output_min; |
| params.neon.output_max = output_max; |
| #else |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| params.scalar.input_zero_point = (int32_t) (uint32_t) input_zero_point; |
| params.scalar.kernel_zero_point = (int32_t) (uint32_t) kernel_zero_point; |
| params.scalar.multiplier = multiplier; |
| params.scalar.remainder_mask = (int32_t) remainder_mask; |
| params.scalar.remainder_threshold = (int32_t) remainder_threshold; |
| params.scalar.shift = (uint32_t) shift; |
| params.scalar.output_min_less_zero_point = |
| (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_max_less_zero_point = |
| (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_q8_avgpool_params xnn_init_q8_avgpool_params( |
| int32_t bias, |
| float scale, |
| uint8_t output_zero_point, |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| // Compute requantization parameters. |
| assert(scale >= 0x1.0p-32f); |
| assert(scale < 256.0f); |
| const uint32_t scale_bits = fp32_to_bits(scale); |
| |
| // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| assert(multiplier >= INT32_C(0x00800000)); |
| assert(multiplier <= INT32_C(0x00FFFFFF)); |
| |
| // Shift is in [16, 55] range. |
| const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| assert(shift >= 16); |
| assert(shift < 64); |
| |
| union xnn_q8_avgpool_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| const uint32_t right_shift = (uint32_t) shift; |
| const uint64_t rounding = UINT64_C(1) << (right_shift - 1); |
| params.sse2.bias[0] = bias; |
| params.sse2.bias[1] = bias; |
| params.sse2.bias[2] = bias; |
| params.sse2.bias[3] = bias; |
| params.sse2.multiplier[0] = (uint32_t) multiplier; |
| params.sse2.multiplier[1] = (uint32_t) multiplier; |
| params.sse2.multiplier[2] = (uint32_t) multiplier; |
| params.sse2.multiplier[3] = (uint32_t) multiplier; |
| params.sse2.rounding[0] = rounding; |
| params.sse2.rounding[1] = rounding; |
| params.sse2.right_shift[0] = (uint64_t) right_shift; |
| params.sse2.right_shift[1] = (uint64_t) right_shift; |
| for (uint32_t i = 0; i < 8; i++) { |
| params.sse2.output_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
| } |
| for (uint32_t i = 0; i < 16; i++) { |
| params.sse2.output_min[i] = output_min; |
| params.sse2.output_max[i] = output_max; |
| } |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.bias = bias; |
| params.neon.multiplier = multiplier; |
| params.neon.left_shift = (int64_t) -shift; |
| params.neon.output_zero_point = (int16_t) (uint16_t) output_zero_point; |
| params.neon.output_min = output_min; |
| params.neon.output_max = output_max; |
| #else |
| const uint32_t right_shift = (uint32_t) shift; |
| const int64_t rounding = INT64_C(1) << (right_shift - 1); |
| params.scalar.bias = bias; |
| params.scalar.multiplier = multiplier; |
| params.scalar.rounding = rounding; |
| params.scalar.right_shift = right_shift; |
| params.scalar.output_min_less_zero_point = |
| (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_max_less_zero_point = |
| (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_q8_avgpool_params xnn_init_scalar_q8_avgpool_params( |
| int32_t bias, |
| float scale, |
| uint8_t output_zero_point, |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| // Compute requantization parameters. |
| assert(scale >= 0x1.0p-32f); |
| assert(scale < 256.0f); |
| const uint32_t scale_bits = fp32_to_bits(scale); |
| |
| // Multiplier is in [0x00800000, 0x00FFFFFF] range. |
| const int32_t multiplier = ((int32_t) scale_bits & INT32_C(0x007FFFFF)) | INT32_C(0x00800000); |
| assert(multiplier >= INT32_C(0x00800000)); |
| assert(multiplier <= INT32_C(0x00FFFFFF)); |
| |
| // Shift is in [16, 55] range. |
| const int32_t shift = 127 + 23 - (scale_bits >> 23); |
| assert(shift >= 16); |
| assert(shift < 64); |
| |
| union xnn_q8_avgpool_params params; |
| const uint32_t right_shift = (uint32_t) shift; |
| const int64_t rounding = INT64_C(1) << (right_shift - 1); |
| params.scalar.bias = bias; |
| params.scalar.rounding = rounding; |
| params.scalar.multiplier = multiplier; |
| params.scalar.right_shift = right_shift; |
| params.scalar.output_min_less_zero_point = |
| (int32_t) (uint32_t) output_min - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_max_less_zero_point = |
| (int32_t) (uint32_t) output_max - (int32_t) (uint32_t) output_zero_point; |
| params.scalar.output_zero_point = (int32_t) (uint32_t) output_zero_point; |
| return params; |
| } |
| |
| static inline void xnn_update_f16_scaleminmax_params( |
| struct xnn_f16_scaleminmax_params* params, |
| uint16_t scale) |
| { |
| params->scale = scale; |
| } |
| |
| static inline void xnn_update_f32_scaleminmax_params( |
| union xnn_f32_scaleminmax_params* params, |
| float scale) |
| { |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params->sse2.scale[i] = scale; |
| } |
| #else |
| params->scalar.scale = scale; |
| #endif |
| } |
| |
| static inline struct xnn_f16_scaleminmax_params xnn_init_f16_scaleminmax_params( |
| uint16_t scale, |
| uint16_t min, |
| uint16_t max) |
| { |
| struct xnn_f16_scaleminmax_params params; |
| params.scale = scale; |
| params.min = min; |
| params.max = max; |
| return params; |
| } |
| |
| static inline union xnn_f32_scaleminmax_params xnn_init_f32_scaleminmax_params( |
| float scale, |
| float min, |
| float max) |
| { |
| union xnn_f32_scaleminmax_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse2.scale[i] = scale; |
| params.sse2.min[i] = min; |
| params.sse2.max[i] = max; |
| } |
| #else |
| params.scalar.scale = scale; |
| params.scalar.min = min; |
| params.scalar.max = max; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_gavgpool_params xnn_init_f32_gavgpool_params( |
| float multiplier, |
| float output_min, |
| float output_max, |
| uint32_t width) |
| { |
| union xnn_f32_gavgpool_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.multiplier[i] = multiplier; |
| params.sse.output_min[i] = output_min; |
| params.sse.output_max[i] = output_max; |
| } |
| |
| const uint32_t w = (width - 1) & 3; |
| params.sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| params.sse.mask[1] = -(uint32_t) (w >= 1); |
| params.sse.mask[2] = -(uint32_t) (w >= 2); |
| params.sse.mask[3] = -(uint32_t) (w >= 3); |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.multiplier = multiplier; |
| params.neon.output_min = output_min; |
| params.neon.output_max = output_max; |
| |
| const uint32_t w = (width - 1) & 3; |
| params.neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| params.neon.mask[1] = -(uint32_t) (w >= 1); |
| params.neon.mask[2] = -(uint32_t) (w >= 2); |
| params.neon.mask[3] = -(uint32_t) (w >= 3); |
| #else |
| params.scalar.multiplier = multiplier; |
| params.scalar.output_min = output_min; |
| params.scalar.output_max = output_max; |
| |
| const uint32_t w = (width - 1) & 3; |
| params.scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| params.scalar.mask[1] = -(int32_t) (w >= 1); |
| params.scalar.mask[2] = -(int32_t) (w >= 2); |
| params.scalar.mask[3] = -(int32_t) (w >= 3); |
| #endif |
| return params; |
| } |
| |
| static inline void xnn_update_f32_gavgpool_params( |
| union xnn_f32_gavgpool_params* params, |
| float multiplier, |
| uint32_t width) |
| { |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params->sse.multiplier[i] = multiplier; |
| } |
| |
| const uint32_t w = (width - 1) & 3; |
| params->sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| params->sse.mask[1] = -(uint32_t) (w >= 1); |
| params->sse.mask[2] = -(uint32_t) (w >= 2); |
| params->sse.mask[3] = -(uint32_t) (w >= 3); |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params->neon.multiplier = multiplier; |
| |
| const uint32_t w = (width - 1) & 3; |
| params->neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| params->neon.mask[1] = -(uint32_t) (w >= 1); |
| params->neon.mask[2] = -(uint32_t) (w >= 2); |
| params->neon.mask[3] = -(uint32_t) (w >= 3); |
| #else |
| params->scalar.multiplier = multiplier; |
| |
| const uint32_t w = (width - 1) & 3; |
| params->scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| params->scalar.mask[1] = (int32_t) (w >= 1); |
| params->scalar.mask[2] = (int32_t) (w >= 2); |
| params->scalar.mask[3] = (int32_t) (w >= 3); |
| #endif |
| } |
| |
| static inline union xnn_f32_scaleminmax_params xnn_init_scalar_f32_scaleminmax_params( |
| float scale, |
| float min, |
| float max) |
| { |
| union xnn_f32_scaleminmax_params params; |
| params.scalar.scale = scale; |
| params.scalar.min = min; |
| params.scalar.max = max; |
| return params; |
| } |
| |
| static inline union xnn_f32_gavgpool_params xnn_init_scalar_f32_gavgpool_params( |
| float multiplier, |
| float output_min, |
| float output_max, |
| uint32_t width) |
| { |
| union xnn_f32_gavgpool_params params; |
| params.scalar.multiplier = multiplier; |
| params.scalar.output_min = output_min; |
| params.scalar.output_max = output_max; |
| |
| const uint32_t w = (width - 1) & 3; |
| params.scalar.mask[0] = UINT32_C(0xFFFFFFFF); |
| params.scalar.mask[1] = -(int32_t) (w >= 1); |
| params.scalar.mask[2] = -(int32_t) (w >= 2); |
| params.scalar.mask[3] = -(int32_t) (w >= 3); |
| return params; |
| } |
| |
| static inline struct xnn_f16_minmax_params xnn_init_f16_minmax_params( |
| uint16_t min, |
| uint16_t max) |
| { |
| struct xnn_f16_minmax_params params; |
| params.min = min; |
| params.max = max; |
| return params; |
| } |
| |
| static inline union xnn_f32_minmax_params xnn_init_f32_minmax_params( |
| float output_min, |
| float output_max) |
| { |
| union xnn_f32_minmax_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.min[i] = output_min; |
| params.sse.max[i] = output_max; |
| } |
| #else |
| params.scalar.min = output_min; |
| params.scalar.max = output_max; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_minmax_params xnn_init_scalar_f32_minmax_params( |
| float output_min, |
| float output_max) |
| { |
| union xnn_f32_minmax_params params; |
| params.scalar.min = output_min; |
| params.scalar.max = output_max; |
| return params; |
| } |
| |
| static inline struct xnn_f16_hswish_params xnn_init_f16_hswish_params(void) |
| { |
| struct xnn_f16_hswish_params params; |
| params.sixth = fp16_ieee_from_fp32_value(0x1.555556p-3f); |
| params.half = fp16_ieee_from_fp32_value(0.5f); |
| params.one = fp16_ieee_from_fp32_value(1.0f); |
| return params; |
| } |
| |
| static inline union xnn_f32_hswish_params xnn_init_f32_hswish_params(void) |
| { |
| union xnn_f32_hswish_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.sixth[i] = 0x1.555556p-3f; |
| params.sse.half[i] = 0.5f; |
| params.sse.one[i] = 1.0f; |
| } |
| #else |
| params.scalar.sixth = 0x1.555556p-3f; |
| params.scalar.half = 0.5f; |
| params.scalar.one = 1.0f; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_hswish_params xnn_init_scalar_f32_hswish_params(void) |
| { |
| union xnn_f32_hswish_params params; |
| params.scalar.sixth = 0x1.555556p-3f; |
| params.scalar.half = 0.5f; |
| params.scalar.one = 1.0f; |
| return params; |
| } |
| |
| static inline union xnn_f32_abs_params xnn_init_f32_abs_params(void) |
| { |
| union xnn_f32_abs_params params = { 0 }; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.nonsign_mask[i] = math_nonsign_mask_f32(); |
| } |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_abs_params xnn_init_scalar_f32_abs_params(void) |
| { |
| union xnn_f32_abs_params params = { 0 }; |
| return params; |
| } |
| |
| static inline union xnn_f32_neg_params xnn_init_f32_neg_params(void) |
| { |
| union xnn_f32_neg_params params = { 0 }; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.sign_mask[i] = -0.0f; |
| } |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_neg_params xnn_init_scalar_f32_neg_params(void) |
| { |
| union xnn_f32_neg_params params = { 0 }; |
| return params; |
| } |
| |
| static inline union xnn_f32_rnd_params xnn_init_f32_rnd_params(void) |
| { |
| union xnn_f32_rnd_params params = { 0 }; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse2.sign_mask[i] = -0.0f; |
| } |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse2.one[i] = 1.0f; |
| } |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_rnd_params xnn_init_scalar_f32_rnd_params(void) |
| { |
| union xnn_f32_rnd_params params = { 0 }; |
| return params; |
| } |
| |
| static inline union xnn_f32_lrelu_params xnn_init_f32_lrelu_params(float slope) |
| { |
| union xnn_f32_lrelu_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.slope[i] = slope; |
| } |
| #else |
| params.scalar.slope = slope; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_f32_lrelu_params xnn_init_scalar_f32_lrelu_params(float slope) |
| { |
| union xnn_f32_lrelu_params params; |
| params.scalar.slope = slope; |
| return params; |
| } |
| |
| static inline union xnn_f32_chw_params xnn_init_f32_chw_params( |
| uint32_t width, |
| float output_min, |
| float output_max) |
| { |
| union xnn_f32_chw_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse.min[i] = output_min; |
| params.sse.max[i] = output_max; |
| } |
| |
| const uint32_t w4 = (width - 1) & 3; |
| params.sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| params.sse.mask[1] = -(uint32_t) (w4 >= 1); |
| params.sse.mask[2] = -(uint32_t) (w4 >= 2); |
| params.sse.mask[3] = -(uint32_t) (w4 >= 3); |
| |
| const uint32_t w8 = (width - 1) & 7; |
| params.sse.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| params.sse.mask_even[1] = -(uint32_t) (w8 >= 2); |
| params.sse.mask_even[2] = -(uint32_t) (w8 >= 4); |
| params.sse.mask_even[3] = -(uint32_t) (w8 >= 6); |
| params.sse.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| params.sse.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| params.sse.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| params.sse.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.min = output_min; |
| params.neon.max = output_max; |
| |
| const uint32_t w4 = (width - 1) & 3; |
| params.neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| params.neon.mask[1] = -(uint32_t) (w4 >= 1); |
| params.neon.mask[2] = -(uint32_t) (w4 >= 2); |
| params.neon.mask[3] = -(uint32_t) (w4 >= 3); |
| |
| const uint32_t w8 = (width - 1) & 7; |
| params.neon.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| params.neon.mask_even[1] = -(uint32_t) (w8 >= 2); |
| params.neon.mask_even[2] = -(uint32_t) (w8 >= 4); |
| params.neon.mask_even[3] = -(uint32_t) (w8 >= 6); |
| params.neon.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| params.neon.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| params.neon.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| params.neon.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| #else |
| params.scalar.min = output_min; |
| params.scalar.max = output_max; |
| |
| const uint32_t w4 = (width - 1) & 3; |
| params.scalar.mask[0] = INT32_C(0xFFFFFFFF); |
| params.scalar.mask[1] = -(int32_t) (w4 >= 1); |
| params.scalar.mask[2] = -(int32_t) (w4 >= 2); |
| params.scalar.mask[3] = -(int32_t) (w4 >= 3); |
| |
| const uint32_t w8 = (width - 1) & 7; |
| params.scalar.mask_even[0] = INT32_C(0xFFFFFFFF); |
| params.scalar.mask_even[1] = -(int32_t) (w8 >= 2); |
| params.scalar.mask_even[2] = -(int32_t) (w8 >= 4); |
| params.scalar.mask_even[3] = -(int32_t) (w8 >= 6); |
| params.scalar.mask_odd[0] = -(int32_t) (w8 >= 1); |
| params.scalar.mask_odd[1] = -(int32_t) (w8 >= 3); |
| params.scalar.mask_odd[2] = -(int32_t) (w8 >= 5); |
| params.scalar.mask_odd[3] = -(int32_t) (w8 >= 7); |
| #endif |
| return params; |
| } |
| |
| static inline void xnn_update_f32_chw_params( |
| union xnn_f32_chw_params* params, |
| uint32_t width) |
| { |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| const uint32_t w4 = (width - 1) & 3; |
| params->sse.mask[0] = UINT32_C(0xFFFFFFFF); |
| params->sse.mask[1] = -(uint32_t) (w4 >= 1); |
| params->sse.mask[2] = -(uint32_t) (w4 >= 2); |
| params->sse.mask[3] = -(uint32_t) (w4 >= 3); |
| |
| const uint32_t w8 = (width - 1) & 7; |
| params->sse.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| params->sse.mask_even[1] = -(uint32_t) (w8 >= 2); |
| params->sse.mask_even[2] = -(uint32_t) (w8 >= 4); |
| params->sse.mask_even[3] = -(uint32_t) (w8 >= 6); |
| params->sse.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| params->sse.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| params->sse.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| params->sse.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| const uint32_t w4 = (width - 1) & 3; |
| params->neon.mask[0] = UINT32_C(0xFFFFFFFF); |
| params->neon.mask[1] = -(uint32_t) (w4 >= 1); |
| params->neon.mask[2] = -(uint32_t) (w4 >= 2); |
| params->neon.mask[3] = -(uint32_t) (w4 >= 3); |
| |
| const uint32_t w8 = (width - 1) & 7; |
| params->neon.mask_even[0] = UINT32_C(0xFFFFFFFF); |
| params->neon.mask_even[1] = -(uint32_t) (w8 >= 2); |
| params->neon.mask_even[2] = -(uint32_t) (w8 >= 4); |
| params->neon.mask_even[3] = -(uint32_t) (w8 >= 6); |
| params->neon.mask_odd[0] = -(uint32_t) (w8 >= 1); |
| params->neon.mask_odd[1] = -(uint32_t) (w8 >= 3); |
| params->neon.mask_odd[2] = -(uint32_t) (w8 >= 5); |
| params->neon.mask_odd[3] = -(uint32_t) (w8 >= 7); |
| #endif |
| } |
| |
| static inline union xnn_f32_chw_params xnn_init_scalar_f32_chw_params( |
| uint32_t width, |
| float output_min, |
| float output_max) |
| { |
| union xnn_f32_chw_params params; |
| params.scalar.min = output_min; |
| params.scalar.max = output_max; |
| |
| const uint32_t w4 = (width - 1) & 3; |
| params.scalar.mask[0] = INT32_C(0xFFFFFFFF); |
| params.scalar.mask[1] = -(int32_t) (w4 >= 1); |
| params.scalar.mask[2] = -(int32_t) (w4 >= 2); |
| params.scalar.mask[3] = -(int32_t) (w4 >= 3); |
| |
| const uint32_t w8 = (width - 1) & 7; |
| params.scalar.mask_even[0] = INT32_C(0xFFFFFFFF); |
| params.scalar.mask_even[1] = -(int32_t) (w8 >= 2); |
| params.scalar.mask_even[2] = -(int32_t) (w8 >= 4); |
| params.scalar.mask_even[3] = -(int32_t) (w8 >= 6); |
| params.scalar.mask_odd[0] = -(int32_t) (w8 >= 1); |
| params.scalar.mask_odd[1] = -(int32_t) (w8 >= 3); |
| params.scalar.mask_odd[2] = -(int32_t) (w8 >= 5); |
| params.scalar.mask_odd[3] = -(int32_t) (w8 >= 7); |
| |
| return params; |
| } |
| |
| static inline union xnn_u8_minmax_params xnn_init_u8_minmax_params( |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| assert(output_min < output_max); |
| |
| union xnn_u8_minmax_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| for (uint32_t i = 0; i < 16; i++) { |
| params.sse2.min[i] = output_min; |
| params.sse2.max[i] = output_max; |
| } |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.min = output_min; |
| params.neon.max = output_max; |
| #else |
| params.scalar.min = (int32_t) (uint32_t) output_min; |
| params.scalar.max = (int32_t) (uint32_t) output_max; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_u8_minmax_params xnn_init_scalar_u8_minmax_params( |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| assert(output_min < output_max); |
| |
| union xnn_u8_minmax_params params; |
| params.scalar.min = (int32_t) (uint32_t) output_min; |
| params.scalar.max = (int32_t) (uint32_t) output_max; |
| return params; |
| } |
| |
| static inline union xnn_q8_add_params xnn_init_q8_add_params( |
| uint8_t a_zero_point, |
| uint8_t b_zero_point, |
| uint8_t output_zero_point, |
| float a_output_scale, |
| float b_output_scale, |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| assert(a_output_scale >= 0x1.0p-14f); |
| assert(b_output_scale >= 0x1.0p-14f); |
| assert(a_output_scale < 0x1.0p+8f); |
| assert(b_output_scale < 0x1.0p+8f); |
| |
| // Compute requantization parameters. |
| const float max_output_scale = a_output_scale > b_output_scale ? a_output_scale : b_output_scale; |
| assert(max_output_scale >= 0x1.0p-14f); |
| assert(max_output_scale < 0x1.0p+8f); |
| const uint32_t max_scale_bits = fp32_to_bits(max_output_scale); |
| const int32_t max_scale_exponent = (int32_t) (max_scale_bits >> 23) - 127; |
| // Shift is in [13, 31] range. |
| const uint32_t shift = (uint32_t) (21 - max_scale_exponent); |
| assert(shift < 32); |
| assert(shift >= 13); |
| |
| const float scale_multiplier = fp32_from_bits((uint32_t) (21 - max_scale_exponent + 127) << 23); |
| |
| // Multipliers are in [0, 2**22) range, largest multiplier is in [2**21, 2**22) range. |
| const uint32_t a_multiplier = (uint32_t) (int32_t) lrintf(a_output_scale * scale_multiplier); |
| const uint32_t b_multiplier = (uint32_t) (int32_t) lrintf(b_output_scale * scale_multiplier); |
| assert((a_multiplier > b_multiplier ? a_multiplier : b_multiplier) >= UINT32_C(0x00200000)); |
| assert(a_multiplier < UINT32_C(0x00400000)); |
| assert(b_multiplier < UINT32_C(0x00400000)); |
| |
| union xnn_q8_add_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| const int32_t zero_point_product = |
| (int32_t) -(a_multiplier * (uint32_t) a_zero_point + b_multiplier * (uint32_t) b_zero_point); |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse2.zero_point_product[i] = zero_point_product; |
| } |
| for (uint32_t i = 0; i < 8; i++) { |
| params.sse2.y_zero_point[i] = (int16_t) (uint16_t) output_zero_point; |
| } |
| for (uint32_t i = 0; i < 8; i++) { |
| params.sse2.a_multiplier_lo[i] = (uint16_t) (uint32_t) a_multiplier; |
| params.sse2.a_multiplier_hi[i] = (uint16_t) ((uint32_t) a_multiplier >> 16); |
| params.sse2.b_multiplier_lo[i] = (uint16_t) (uint32_t) b_multiplier; |
| params.sse2.b_multiplier_hi[i] = (uint16_t) ((uint32_t) b_multiplier >> 16); |
| } |
| params.sse2.a_multiplier = a_multiplier; |
| params.sse2.b_multiplier = b_multiplier; |
| for (uint32_t i = 0; i < 4; i++) { |
| params.sse2.remainder_mask[i] = remainder_mask; |
| params.sse2.remainder_threshold[i] = remainder_threshold; |
| } |
| params.sse2.shift = shift; |
| for (uint32_t i = 0; i < 16; i++) { |
| params.sse2.y_min[i] = output_min; |
| params.sse2.y_max[i] = output_max; |
| } |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.a_zero_point = a_zero_point; |
| params.neon.b_zero_point = b_zero_point; |
| params.neon.y_zero_point = (int16_t) (uint16_t) output_zero_point; |
| params.neon.a_multiplier = (int32_t) a_multiplier; |
| params.neon.b_multiplier = (int32_t) b_multiplier; |
| params.neon.right_shift = (int32_t) -shift; |
| params.neon.y_min = output_min; |
| params.neon.y_max = output_max; |
| #else |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| params.scalar.zero_point_product = |
| (int32_t) -(a_multiplier * (uint32_t) a_zero_point + b_multiplier * (uint32_t) b_zero_point); |
| params.scalar.a_multiplier = a_multiplier; |
| params.scalar.b_multiplier = b_multiplier; |
| params.scalar.remainder_mask = (int32_t) remainder_mask; |
| params.scalar.remainder_threshold = (int32_t) remainder_threshold; |
| params.scalar.shift = shift; |
| params.scalar.y_zero_point = (int32_t) (uint32_t) output_zero_point; |
| params.scalar.y_min = (int32_t) (uint32_t) output_min; |
| params.scalar.y_max = (int32_t) (uint32_t) output_max; |
| #endif |
| return params; |
| } |
| |
| static inline union xnn_q8_add_params xnn_init_scalar_q8_add_params( |
| uint8_t a_zero_point, |
| uint8_t b_zero_point, |
| uint8_t output_zero_point, |
| float a_output_scale, |
| float b_output_scale, |
| uint8_t output_min, |
| uint8_t output_max) |
| { |
| assert(a_output_scale >= 0x1.0p-10f); |
| assert(b_output_scale >= 0x1.0p-10f); |
| assert(a_output_scale < 0x1.0p+8f); |
| assert(b_output_scale < 0x1.0p+8f); |
| |
| // Compute requantization parameters. |
| const float max_output_scale = a_output_scale > b_output_scale ? a_output_scale : b_output_scale; |
| assert(max_output_scale >= 0x1.0p-10f); |
| assert(max_output_scale < 0x1.0p+8f); |
| const uint32_t max_scale_bits = fp32_to_bits(max_output_scale); |
| const int32_t max_scale_exponent = (int32_t) (max_scale_bits >> 23) - 127; |
| // Shift is in [13, 31] range. |
| const uint32_t shift = (uint32_t) (21 - max_scale_exponent); |
| assert(shift < 32); |
| assert(shift >= 13); |
| |
| // Multipliers are in [0, 2**22) range, largest multiplier is in [2**21, 2**22) range. |
| const uint32_t a_multiplier = (uint32_t) (int32_t) lrintf(fp32_from_bits(fp32_to_bits(a_output_scale) + (shift << 23))); |
| const uint32_t b_multiplier = (uint32_t) (int32_t) lrintf(fp32_from_bits(fp32_to_bits(b_output_scale) + (shift << 23))); |
| assert((a_multiplier > b_multiplier ? a_multiplier : b_multiplier) >= UINT32_C(0x00200000)); |
| assert(a_multiplier < UINT32_C(0x00400000)); |
| assert(b_multiplier < UINT32_C(0x00400000)); |
| |
| union xnn_q8_add_params params; |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| params.scalar.zero_point_product = |
| (int32_t) -(a_multiplier * (uint32_t) a_zero_point + b_multiplier * (uint32_t) b_zero_point); |
| params.scalar.a_multiplier = a_multiplier; |
| params.scalar.b_multiplier = b_multiplier; |
| params.scalar.remainder_mask = (int32_t) remainder_mask; |
| params.scalar.remainder_threshold = (int32_t) remainder_threshold; |
| params.scalar.shift = shift; |
| params.scalar.y_zero_point = (int32_t) (uint32_t) output_zero_point; |
| params.scalar.y_min = (int32_t) (uint32_t) output_min; |
| params.scalar.y_max = (int32_t) (uint32_t) output_max; |
| return params; |
| } |
| |
| static inline union xnn_q31_requantization_params xnn_init_scalar_requantization_params( |
| float scale, |
| uint8_t zero_point, |
| uint8_t min, |
| uint8_t max) |
| { |
| // Compute requantization parameters. |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| const uint32_t scale_bits = fp32_to_bits(scale); |
| |
| // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| assert(multiplier >= INT32_C(0x40000000)); |
| assert(multiplier <= INT32_C(0x7FFFFF80)); |
| |
| // Shift is in [0, 31] range. |
| const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| assert(shift >= 0); |
| assert(shift < 32); |
| |
| union xnn_q31_requantization_params params; |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| params.scalar.multiplier = multiplier; |
| params.scalar.remainder_mask = (int32_t) remainder_mask; |
| params.scalar.remainder_threshold = (int32_t) remainder_threshold; |
| params.scalar.shift = (uint32_t) shift; |
| params.scalar.min_less_zero_point = (int32_t) (uint32_t) min - (int32_t) (uint32_t) zero_point; |
| params.scalar.max_less_zero_point = (int32_t) (uint32_t) max - (int32_t) (uint32_t) zero_point; |
| params.scalar.zero_point = (int32_t) (uint32_t) zero_point; |
| return params; |
| } |
| |
| static inline union xnn_q31_requantization_params xnn_init_requantization_params( |
| float scale, |
| uint8_t zero_point, |
| uint8_t min, |
| uint8_t max) |
| { |
| // Compute requantization parameters. |
| const uint32_t scale_bits = fp32_to_bits(scale); |
| |
| // Multiplier is in [0x40000000, 0x7FFFFF80] range. |
| const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7); |
| assert(multiplier >= INT32_C(0x40000000)); |
| assert(multiplier <= INT32_C(0x7FFFFF80)); |
| |
| // Shift is in [0, 31] range. |
| const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23); |
| assert(shift >= 0); |
| assert(shift < 32); |
| |
| union xnn_q31_requantization_params params; |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| params.sse2.multiplier[0] = multiplier; |
| params.sse2.multiplier[1] = multiplier; |
| params.sse2.multiplier[2] = multiplier; |
| params.sse2.multiplier[3] = multiplier; |
| params.sse2.rounding[0] = UINT64_C(0x40000000); |
| params.sse2.rounding[1] = UINT64_C(0x40000000); |
| params.sse2.remainder_mask[0] = (int32_t) remainder_mask; |
| params.sse2.remainder_mask[1] = (int32_t) remainder_mask; |
| params.sse2.remainder_mask[2] = (int32_t) remainder_mask; |
| params.sse2.remainder_mask[3] = (int32_t) remainder_mask; |
| params.sse2.remainder_threshold[0] = (int32_t) remainder_threshold; |
| params.sse2.remainder_threshold[1] = (int32_t) remainder_threshold; |
| params.sse2.remainder_threshold[2] = (int32_t) remainder_threshold; |
| params.sse2.remainder_threshold[3] = (int32_t) remainder_threshold; |
| params.sse2.shift[0] = (uint64_t) (uint32_t) shift; |
| params.sse2.shift[1] = (uint64_t) (uint32_t) shift; |
| for (uint32_t i = 0; i < 8; i++) { |
| params.sse2.zero_point[i] = (int16_t) (uint16_t) zero_point; |
| } |
| for (uint32_t i = 0; i < 16; i++) { |
| params.sse2.min[i] = min; |
| params.sse2.max[i] = max; |
| } |
| #elif XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| params.neon.multiplier = multiplier; |
| params.neon.right_shift = -shift; |
| params.neon.zero_point = (int16_t) (uint16_t) zero_point; |
| params.neon.min = min; |
| params.neon.max = max; |
| #else |
| const uint32_t remainder_mask = (UINT32_C(1) << shift) - UINT32_C(1); |
| const uint32_t remainder_threshold = remainder_mask >> 1; |
| params.scalar.multiplier = multiplier; |
| params.scalar.remainder_mask = (int32_t) remainder_mask; |
| params.scalar.remainder_threshold = (int32_t) remainder_threshold; |
| params.scalar.shift = (uint32_t) shift; |
| params.scalar.min_less_zero_point = (int32_t) (uint32_t) min - (int32_t) (uint32_t) zero_point; |
| params.scalar.max_less_zero_point = (int32_t) (uint32_t) max - (int32_t) (uint32_t) zero_point; |
| params.scalar.zero_point = (int32_t) (uint32_t) zero_point; |
| #endif |
| return params; |
| } |