| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_sigmoid__avx512f_rr1_p5_scalef_nr1fma( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (16 * sizeof(float)) == 0); |
| |
| // Floating-point mask with only the sign bit set |
| const __m512i vsign_mask = _mm512_set1_epi32(0x80000000); |
| const __m512 vlog2e = _mm512_set1_ps(0x1.715476p0f); |
| const __m512 vminus_ln2 = _mm512_set1_ps(-0x1.62E43p-1f); |
| // Coefficient of polynomial approximation of |
| // exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) on [-log(2)/2, log(2)/2] |
| const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); |
| const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); |
| const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); |
| const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); |
| const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); |
| const __m512 vone = _mm512_set1_ps(1.0f); |
| |
| for (; n != 0; n -= 16 * sizeof(float)) { |
| const __m512 vx = _mm512_loadu_ps(input); |
| |
| // General structure of the algorithm: |
| // |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0. |
| const __m512 vz = _mm512_castsi512_ps(_mm512_or_epi32(_mm512_castps_si512(vx), vsign_mask)); |
| |
| // Compute reduced argument n := round(z / log(2)). |
| const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vz, vlog2e), 0); |
| |
| // Compute reduced argument t := z - n * log(2). |
| __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vz); |
| |
| // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. |
| // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = p |
| __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); |
| vp = _mm512_fmadd_ps(vp, vt, vc3); |
| vp = _mm512_fmadd_ps(vp, vt, vc2); |
| vp = _mm512_fmadd_ps(vp, vt, vc1); |
| vp = _mm512_fmadd_ps(vp, vt, vone); |
| |
| // Reconstruct the exp(z) value: e = exp2(n) * p. |
| const __m512 ve = _mm512_scalef_ps(vp, vn); |
| |
| // Denominator of the sigmoid fraction: 1.0 + exp(z) |
| const __m512 vd = _mm512_add_ps(ve, vone); |
| |
| // Use Newton-Raphson method (1 iteration) to compute reciprocal of denominator. |
| // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| // Thus the reciprocal of the denominator never overflows. |
| __m512 vr = _mm512_rcp14_ps(vd); |
| vr = _mm512_fmadd_ps(_mm512_fnmadd_ps(vr, vd, vone), vr, vr); |
| |
| // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z)) |
| __m512 vf = _mm512_mul_ps(ve, vr); |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z) |
| vf = _mm512_mask_sub_ps(vf, _mm512_testn_epi32_mask(_mm512_castps_si512(vx), vsign_mask), vone, vf); |
| |
| _mm512_storeu_ps(output, vf); |
| |
| input += 16; |
| output += 16; |
| } |
| } |