| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/compute.h> |
| #include <xnnpack/indirection.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| static inline size_t compute_output_dimension( |
| size_t padded_input_dimension, |
| size_t kernel_dimension, |
| size_t dilation_dimension, |
| size_t subsampling_dimension) |
| { |
| const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1; |
| return doz(padded_input_dimension, effective_kernel_dimension) / subsampling_dimension + 1; |
| } |
| |
| static inline size_t compute_output_dimension_with_tf_same_padding( |
| size_t input_dimension, |
| size_t subsampling_dimension) |
| { |
| return divide_round_up(input_dimension, subsampling_dimension); |
| } |
| |
| static const struct dwconv_parameters* find_dwigemm_ukernel( |
| size_t kernel_size, |
| const struct dwconv_parameters* ukernel, |
| size_t num_ukernels) |
| { |
| while (num_ukernels-- != 0) { |
| if (ukernel->mr == kernel_size) { |
| return ukernel; |
| } |
| ukernel++; |
| } |
| return NULL; |
| } |
| |
| enum xnn_status xnn_create_convolution2d_nhwc_q8( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t kernel_zero_point, |
| float kernel_scale, |
| const uint8_t* kernel, |
| const int32_t* bias, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* convolution_op_out) |
| { |
| xnn_operator_t convolution_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized"); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (kernel_width == 0 || kernel_height == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero", |
| kernel_width, kernel_height); |
| goto error; |
| } |
| |
| if (subsampling_width == 0 || subsampling_height == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: " |
| "subsampling dimensions must be non-zero", |
| subsampling_width, subsampling_height); |
| goto error; |
| } |
| |
| if (dilation_width == 0 || dilation_height == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: " |
| "dilation dimensions must be non-zero", |
| dilation_width, dilation_height); |
| goto error; |
| } |
| |
| if (groups == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups); |
| goto error; |
| } |
| |
| if (group_input_channels == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %zu input channels per group: " |
| "number of channels must be non-zero", |
| group_input_channels); |
| goto error; |
| } |
| |
| if (group_output_channels == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %zu output channels per group: " |
| "number of channels must be non-zero", |
| group_output_channels); |
| goto error; |
| } |
| |
| const size_t input_channels = groups * group_input_channels; |
| if (input_pixel_stride < input_channels) { |
| xnn_log_error( |
| "failed to create Convolution operator with input pixel stride of %zu: " |
| "stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)", |
| input_pixel_stride, groups, group_input_channels); |
| goto error; |
| } |
| |
| const size_t output_channels = groups * group_output_channels; |
| if (output_pixel_stride < output_channels) { |
| xnn_log_error( |
| "failed to create Convolution operator with output pixel stride of %zu: " |
| "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)", |
| output_pixel_stride, groups, group_output_channels); |
| goto error; |
| } |
| |
| if (input_scale <= 0.0f || !isnormal(input_scale)) { |
| xnn_log_error( |
| "failed to create Convolution operator with %.7g input scale: scale must be finite, normalized, and positive", |
| input_scale); |
| goto error; |
| } |
| |
| if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) { |
| xnn_log_error( |
| "failed to create Convolution operator with %.7g kernel scale: scale must be finite, normalized, and positive", |
| kernel_scale); |
| goto error; |
| } |
| |
| if (output_scale <= 0.0f || !isnormal(output_scale)) { |
| xnn_log_error( |
| "failed to create Convolution operator with %.7g output scale: scale must be finite, normalized, and positive", |
| output_scale); |
| goto error; |
| } |
| |
| if (output_min >= output_max) { |
| xnn_log_error( |
| "failed to create Convolution operator with [%" PRIu8 ", %" PRIu8 "] output range: " |
| "range min must be below range max", |
| output_min, output_max); |
| goto error; |
| } |
| |
| if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) { |
| xnn_log_error( |
| "failed to create Depthwise Convolution operator with %zu input channels per group: " |
| "Depthwise Convolution must have exactly 1 input channel per group", |
| group_input_channels); |
| goto error; |
| } |
| |
| const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0; |
| if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) { |
| if (any_padding) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: " |
| "TensorFlow SAME padding can't be combined with explicit padding specification", |
| input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); |
| goto error; |
| } |
| } |
| |
| status = xnn_status_unsupported_parameter; |
| |
| const float convolution_scale = input_scale * kernel_scale / output_scale; |
| if (convolution_scale >= 1.0f) { |
| xnn_log_error( |
| "failed to create Convolution operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: " |
| "convolution scale %.7g is greater or equal to 1.0", |
| input_scale, kernel_scale, output_scale, convolution_scale); |
| goto error; |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| convolution_op = xnn_allocate_zero_memory(sizeof(struct xnn_operator)); |
| if (convolution_op == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator)); |
| goto error; |
| } |
| |
| const size_t kernel_size = kernel_height * kernel_width; |
| |
| enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_none; |
| const struct dwconv_parameters* dwconv_parameters = NULL; |
| if (group_input_channels == 1 && group_output_channels == 1 && groups > 1 && |
| (dwconv_parameters = find_dwigemm_ukernel(kernel_size, xnn_params.q8.dwconv, XNN_MAX_Q8_DWCONV_UKERNELS)) != NULL) |
| { |
| ukernel_type = xnn_ukernel_type_dwconv; |
| } else if (kernel_size == 1 && subsampling_height == 1 && subsampling_width == 1 && !any_padding) { |
| ukernel_type = xnn_ukernel_type_gemm; |
| } else { |
| ukernel_type = xnn_ukernel_type_igemm; |
| } |
| |
| size_t zero_size = 0; |
| switch (ukernel_type) { |
| case xnn_ukernel_type_dwconv: |
| { |
| assert(dwconv_parameters != NULL); |
| assert(dwconv_parameters->mr == kernel_size); |
| |
| const uint32_t c_stride = round_up_po2(groups, dwconv_parameters->cr); |
| const size_t packed_weights_size = (sizeof(uint8_t) * kernel_size + sizeof(int32_t)) * c_stride; |
| convolution_op->packed_weights = xnn_allocate_memory(packed_weights_size); |
| if (convolution_op->packed_weights == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size); |
| goto error; |
| } |
| |
| if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) { |
| xnn_pack_q8_dwconv_hwg_w( |
| kernel_height, kernel_width, |
| groups, dwconv_parameters->cr, |
| input_zero_point, kernel_zero_point, |
| kernel, bias, convolution_op->packed_weights); |
| } else { |
| xnn_pack_q8_dwconv_ghw_w( |
| kernel_height, kernel_width, |
| groups, dwconv_parameters->cr, |
| input_zero_point, kernel_zero_point, |
| kernel, bias, convolution_op->packed_weights); |
| } |
| |
| convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) { |
| .unipass_function = dwconv_parameters->up, |
| .mr = dwconv_parameters->mr, |
| .qr = dwconv_parameters->qr, |
| }; |
| |
| zero_size = sizeof(uint8_t) * c_stride + XNN_EXTRA_BYTES; |
| break; |
| } |
| case xnn_ukernel_type_gemm: |
| case xnn_ukernel_type_igemm: |
| { |
| const uint32_t nr = xnn_params.q8.gemm.nr; |
| const uint32_t kr = UINT32_C(1) << xnn_params.q8.gemm.log2_kr; |
| const uint32_t n_stride = round_up(group_output_channels, nr); |
| const uint32_t k_stride = round_up_po2(group_input_channels, kr); |
| |
| const size_t packed_group_weights_size = |
| (sizeof(uint8_t) * kernel_size * k_stride + sizeof(int32_t)) * n_stride; |
| convolution_op->packed_weights = xnn_allocate_memory(packed_group_weights_size * groups); |
| if (convolution_op->packed_weights == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups); |
| goto error; |
| } |
| memset(convolution_op->packed_weights, kernel_zero_point, packed_group_weights_size * groups); |
| |
| switch (ukernel_type) { |
| case xnn_ukernel_type_gemm: |
| xnn_pack_q8_gemm_goi_w( |
| groups, group_output_channels, group_input_channels, |
| nr, kr, |
| input_zero_point, kernel_zero_point, |
| kernel, bias, convolution_op->packed_weights); |
| convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) { |
| .mr = xnn_params.q8.gemm.mr, |
| .nr = nr, |
| .kr = kr, |
| .default_function = xnn_params.q8.gemm.gemm, |
| }; |
| break; |
| case xnn_ukernel_type_igemm: |
| if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) { |
| xnn_pack_q8_conv_kgo_w( |
| groups, group_output_channels, kernel_size, |
| nr, kr, |
| input_zero_point, kernel_zero_point, |
| kernel, bias, convolution_op->packed_weights); |
| } else { |
| xnn_pack_q8_conv_goki_w( |
| groups, group_output_channels, kernel_size, group_input_channels, |
| nr, kr, |
| input_zero_point, kernel_zero_point, |
| kernel, bias, convolution_op->packed_weights); |
| } |
| convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) { |
| .mr = xnn_params.q8.gemm.mr, |
| .nr = nr, |
| .kr = kr, |
| .default_function = xnn_params.q8.gemm.igemm, |
| }; |
| break; |
| default: |
| XNN_UNREACHABLE; |
| } |
| |
| zero_size = sizeof(uint8_t) * k_stride + XNN_EXTRA_BYTES; |
| break; |
| } |
| default: |
| XNN_UNREACHABLE; |
| } |
| |
| const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1; |
| if (any_padding || tf_same_padding) { |
| void* zero_buffer = xnn_allocate_memory(zero_size); |
| if (zero_buffer == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size); |
| goto error; |
| } |
| memset(zero_buffer, input_zero_point, zero_size); |
| convolution_op->zero_buffer = zero_buffer; |
| } |
| |
| convolution_op->padding_top = input_padding_top; |
| convolution_op->padding_right = input_padding_right; |
| convolution_op->padding_bottom = input_padding_bottom; |
| convolution_op->padding_left = input_padding_left; |
| |
| convolution_op->kernel_height = kernel_height; |
| convolution_op->kernel_width = kernel_width; |
| convolution_op->stride_height = subsampling_height; |
| convolution_op->stride_width = subsampling_width; |
| convolution_op->dilation_height = dilation_height; |
| convolution_op->dilation_width = dilation_width; |
| convolution_op->groups = groups; |
| convolution_op->group_input_channels = group_input_channels; |
| convolution_op->group_output_channels = group_output_channels; |
| convolution_op->input_pixel_stride = input_pixel_stride; |
| convolution_op->output_pixel_stride = output_pixel_stride; |
| |
| convolution_op->kernel_zero_point = kernel_zero_point; |
| |
| convolution_op->q8_gemm_params = |
| xnn_init_q8_gemm_params( |
| input_zero_point, kernel_zero_point, |
| convolution_scale, output_zero_point, output_min, output_max); |
| |
| convolution_op->type = xnn_operator_type_convolution_q8; |
| convolution_op->ukernel.type = ukernel_type; |
| if (tf_same_padding) { |
| convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING; |
| } |
| |
| convolution_op->state = xnn_run_state_invalid; |
| |
| *convolution_op_out = convolution_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(convolution_op); |
| return status; |
| } |
| |
| enum xnn_status xnn_create_convolution2d_nhwc_f32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| const float* kernel, |
| const float* bias, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* convolution_op_out) |
| { |
| xnn_operator_t convolution_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized"); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (kernel_width == 0 || kernel_height == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero", |
| kernel_width, kernel_height); |
| goto error; |
| } |
| |
| if (subsampling_width == 0 || subsampling_height == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: " |
| "subsampling dimensions must be non-zero", |
| subsampling_width, subsampling_height); |
| goto error; |
| } |
| |
| if (dilation_width == 0 || dilation_height == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: " |
| "dilation dimensions must be non-zero", |
| dilation_width, dilation_height); |
| goto error; |
| } |
| |
| if (groups == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups); |
| goto error; |
| } |
| |
| if (group_input_channels == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %zu input channels per group: " |
| "number of channels must be non-zero", |
| group_input_channels); |
| goto error; |
| } |
| |
| if (group_output_channels == 0) { |
| xnn_log_error( |
| "failed to create Convolution operator with %zu output channels per group: " |
| "number of channels must be non-zero", |
| group_output_channels); |
| goto error; |
| } |
| |
| const size_t input_channels = groups * group_input_channels; |
| if (input_pixel_stride < input_channels) { |
| xnn_log_error( |
| "failed to create Convolution operator with input pixel stride of %zu: " |
| "stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)", |
| input_pixel_stride, groups, group_input_channels); |
| goto error; |
| } |
| |
| const size_t output_channels = groups * group_output_channels; |
| if (output_pixel_stride < output_channels) { |
| xnn_log_error( |
| "failed to create Convolution operator with output pixel stride of %zu: " |
| "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)", |
| output_pixel_stride, groups, group_output_channels); |
| goto error; |
| } |
| |
| if (isnan(output_min)) { |
| xnn_log_error( |
| "failed to create Convolution operator with NaN output lower bound: lower bound must be non-NaN"); |
| goto error; |
| } |
| |
| if (isnan(output_max)) { |
| xnn_log_error( |
| "failed to create Convolution operator with NaN output upper bound: upper bound must be non-NaN"); |
| goto error; |
| } |
| |
| if (output_min >= output_max) { |
| xnn_log_error( |
| "failed to create Convolution operator with [%.7g, %.7g] output range: " |
| "lower bound must be below upper bound", |
| output_min, output_max); |
| goto error; |
| } |
| |
| if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) { |
| xnn_log_error( |
| "failed to create Depthwise Convolution operator with %zu input channels per group: " |
| "Depthwise Convolution must have exactly 1 input channel per group", |
| group_input_channels); |
| goto error; |
| } |
| |
| const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0; |
| if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) { |
| if (any_padding) { |
| xnn_log_error( |
| "failed to create Convolution operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: " |
| "TensorFlow SAME padding can't be combined with explicit padding specification", |
| input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); |
| goto error; |
| } |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| convolution_op = xnn_allocate_zero_memory(sizeof(struct xnn_operator)); |
| if (convolution_op == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator)); |
| goto error; |
| } |
| |
| const size_t kernel_size = kernel_height * kernel_width; |
| |
| enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_none; |
| const struct dwconv_parameters* dwconv_parameters = NULL; |
| const bool unit_subsampling = (subsampling_width | subsampling_height) == 1; |
| if (group_input_channels == 1 && group_output_channels == 1 && kernel_size == 1 && unit_subsampling && !any_padding) { |
| ukernel_type = xnn_ukernel_type_vmulcaddc; |
| } else if (group_input_channels == 1 && group_output_channels == 1 && (dwconv_parameters = |
| find_dwigemm_ukernel(kernel_size, xnn_params.f32.dwconv, XNN_MAX_F32_DWCONV_UKERNELS)) != NULL) |
| { |
| ukernel_type = xnn_ukernel_type_dwconv; |
| } else if (kernel_size == 1 && unit_subsampling && !any_padding) { |
| ukernel_type = xnn_ukernel_type_gemm; |
| } else { |
| ukernel_type = xnn_ukernel_type_igemm; |
| } |
| |
| size_t zero_size = 0; |
| switch (ukernel_type) { |
| case xnn_ukernel_type_vmulcaddc: |
| { |
| const uint32_t c_stride = round_up_po2(groups, xnn_params.f32.vmulcaddc.channel_tile); |
| const size_t packed_weights_size = 2 * sizeof(float) * c_stride; |
| convolution_op->packed_weights = xnn_allocate_memory(packed_weights_size); |
| if (convolution_op->packed_weights == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size); |
| goto error; |
| } |
| |
| xnn_pack_f32_vmulcaddc_w( |
| groups, xnn_params.f32.vmulcaddc.channel_tile, |
| kernel, bias, convolution_op->packed_weights); |
| |
| convolution_op->ukernel.vmulcaddc = (struct xnn_ukernel_vmulcaddc) { |
| .function = xnn_params.f32.vmulcaddc.ukernel, |
| .mr = xnn_params.f32.vmulcaddc.row_tile, |
| }; |
| break; |
| } |
| case xnn_ukernel_type_dwconv: |
| { |
| assert(dwconv_parameters != NULL); |
| assert(dwconv_parameters->mr == kernel_size); |
| |
| const uint32_t c_stride = round_up_po2(groups, dwconv_parameters->cr); |
| const size_t packed_weights_size = (kernel_size + 1) * sizeof(float) * c_stride; |
| convolution_op->packed_weights = xnn_allocate_memory(packed_weights_size); |
| if (convolution_op->packed_weights == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size); |
| goto error; |
| } |
| |
| if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) { |
| xnn_pack_f32_dwconv_hwg_w( |
| kernel_height, kernel_width, |
| groups, dwconv_parameters->cr, |
| kernel, bias, convolution_op->packed_weights); |
| } else { |
| xnn_pack_f32_dwconv_ghw_w( |
| kernel_height, kernel_width, |
| groups, dwconv_parameters->cr, |
| kernel, bias, convolution_op->packed_weights); |
| } |
| |
| convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) { |
| .unipass_function = dwconv_parameters->up, |
| .mr = dwconv_parameters->mr, |
| .qr = dwconv_parameters->qr, |
| }; |
| |
| zero_size = sizeof(float) * c_stride; |
| break; |
| } |
| case xnn_ukernel_type_gemm: |
| case xnn_ukernel_type_igemm: |
| { |
| const uint32_t nr = xnn_params.f32.gemm.nr; |
| const uint32_t kr = UINT32_C(1) << xnn_params.f32.gemm.log2_kr; |
| const uint32_t sr = UINT32_C(1) << xnn_params.f32.gemm.log2_sr; |
| const uint32_t n_stride = round_up(group_output_channels, nr); |
| const uint32_t k_stride = round_up_po2(group_input_channels, kr); |
| |
| const size_t packed_group_weights_size = (kernel_size * k_stride + 1) * sizeof(float) * n_stride; |
| convolution_op->packed_weights = xnn_allocate_memory(packed_group_weights_size * groups); |
| if (convolution_op->packed_weights == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups); |
| goto error; |
| } |
| memset(convolution_op->packed_weights, 0, packed_group_weights_size * groups); |
| |
| switch (ukernel_type) { |
| case xnn_ukernel_type_gemm: |
| xnn_pack_f32_gemm_goi_w( |
| groups, group_output_channels, group_input_channels, |
| nr, kr, sr, |
| kernel, bias, convolution_op->packed_weights); |
| convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) { |
| .mr = xnn_params.f32.gemm.mr, |
| .nr = nr, |
| .kr = kr, |
| .default_function = xnn_params.f32.gemm.gemm, |
| .mr1_function = xnn_params.f32.gemm.gemm1, |
| }; |
| break; |
| case xnn_ukernel_type_igemm: |
| if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) { |
| xnn_pack_f32_conv_kgo_w( |
| groups, group_output_channels, kernel_size, |
| nr, kr, |
| kernel, bias, convolution_op->packed_weights); |
| } else { |
| xnn_pack_f32_conv_goki_w( |
| groups, group_output_channels, kernel_size, group_input_channels, |
| nr, kr, sr, |
| kernel, bias, convolution_op->packed_weights); |
| } |
| convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) { |
| .mr = xnn_params.f32.gemm.mr, |
| .nr = nr, |
| .kr = kr, |
| .default_function = xnn_params.f32.gemm.igemm, |
| .mr1_function = xnn_params.f32.gemm.igemm1, |
| }; |
| break; |
| default: |
| XNN_UNREACHABLE; |
| } |
| |
| zero_size = sizeof(float) * k_stride; |
| break; |
| } |
| default: |
| XNN_UNREACHABLE; |
| } |
| |
| const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1; |
| if (any_padding || tf_same_padding) { |
| void* zero_buffer = xnn_allocate_zero_memory(zero_size); |
| if (zero_buffer == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size); |
| goto error; |
| } |
| convolution_op->zero_buffer = zero_buffer; |
| } |
| |
| convolution_op->padding_top = input_padding_top; |
| convolution_op->padding_right = input_padding_right; |
| convolution_op->padding_bottom = input_padding_bottom; |
| convolution_op->padding_left = input_padding_left; |
| |
| convolution_op->kernel_height = kernel_height; |
| convolution_op->kernel_width = kernel_width; |
| convolution_op->stride_height = subsampling_height; |
| convolution_op->stride_width = subsampling_width; |
| convolution_op->dilation_height = dilation_height; |
| convolution_op->dilation_width = dilation_width; |
| convolution_op->groups = groups; |
| convolution_op->group_input_channels = group_input_channels; |
| convolution_op->group_output_channels = group_output_channels; |
| convolution_op->input_pixel_stride = input_pixel_stride; |
| convolution_op->output_pixel_stride = output_pixel_stride; |
| |
| convolution_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max); |
| |
| convolution_op->type = xnn_operator_type_convolution_f32; |
| convolution_op->ukernel.type = ukernel_type; |
| if (tf_same_padding) { |
| convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING; |
| } |
| |
| convolution_op->state = xnn_run_state_invalid; |
| |
| *convolution_op_out = convolution_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(convolution_op); |
| return status; |
| } |
| |
| static enum xnn_status setup_convolution2d_nhwc( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const void* input, |
| void* output, |
| uint32_t log2_input_element_size, |
| uint32_t log2_filter_element_size, |
| uint32_t bias_element_size, |
| uint32_t log2_output_element_size, |
| const void* params, |
| size_t num_threads) |
| { |
| convolution_op->state = xnn_run_state_invalid; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to setup Convolution operator: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (input_width == 0 || input_height == 0) { |
| xnn_log_error( |
| "failed to setup Convolution operator with %zux%zu input: input dimensions must be non-zero", |
| input_width, input_height); |
| return xnn_status_invalid_parameter; |
| } |
| |
| if (batch_size == 0) { |
| convolution_op->state = xnn_run_state_skip; |
| return xnn_status_success; |
| } |
| |
| convolution_op->batch_size = batch_size; |
| convolution_op->input_height = input_height; |
| convolution_op->input_width = input_width; |
| convolution_op->input = input; |
| |
| if (convolution_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) { |
| convolution_op->output_height = compute_output_dimension_with_tf_same_padding( |
| input_height, convolution_op->stride_height); |
| convolution_op->output_width = compute_output_dimension_with_tf_same_padding( |
| input_width, convolution_op->stride_width); |
| |
| const uint32_t effective_kernel_height = (convolution_op->kernel_height - 1) * convolution_op->dilation_height + 1; |
| const uint32_t effective_kernel_width = (convolution_op->kernel_width - 1) * convolution_op->dilation_width + 1; |
| const uint32_t total_padding_height = |
| (convolution_op->output_height - 1) * convolution_op->stride_height + effective_kernel_height - input_height; |
| const uint32_t total_padding_width = |
| (convolution_op->output_width - 1) * convolution_op->stride_width + effective_kernel_width - input_width; |
| convolution_op->padding_top = total_padding_height / 2; |
| convolution_op->padding_left = total_padding_width / 2; |
| convolution_op->padding_bottom = total_padding_height - convolution_op->padding_top; |
| convolution_op->padding_right = total_padding_width - convolution_op->padding_left; |
| } else { |
| convolution_op->output_height = compute_output_dimension( |
| convolution_op->padding_top + input_height + convolution_op->padding_bottom, |
| convolution_op->kernel_height, |
| convolution_op->dilation_height, |
| convolution_op->stride_height); |
| convolution_op->output_width = compute_output_dimension( |
| convolution_op->padding_left + input_width + convolution_op->padding_right, |
| convolution_op->kernel_width, |
| convolution_op->dilation_width, |
| convolution_op->stride_width); |
| } |
| convolution_op->output = output; |
| |
| switch (convolution_op->ukernel.type) { |
| case xnn_ukernel_type_gemm: |
| { |
| // Convolution maps directly to GEMM and doesn't use indirection buffer. |
| |
| const size_t output_height = convolution_op->output_height; |
| const size_t output_width = convolution_op->output_width; |
| const size_t output_size = output_height * output_width; |
| const size_t batch_output_size = batch_size * output_size; |
| |
| const size_t groups = convolution_op->groups; |
| const size_t group_input_channels = convolution_op->group_input_channels; |
| const size_t w_stride = (round_up_po2(group_input_channels, convolution_op->ukernel.gemm.kr) << log2_filter_element_size) + bias_element_size; |
| const size_t group_output_channels = convolution_op->group_output_channels; |
| |
| uint32_t mr = convolution_op->ukernel.gemm.mr; |
| const uint32_t nr = convolution_op->ukernel.gemm.nr; |
| xnn_gemm_ukernel_function gemm_ukernel = convolution_op->ukernel.gemm.default_function; |
| if (batch_output_size == 1 && convolution_op->ukernel.gemm.mr1_function != NULL) { |
| mr = 1; |
| gemm_ukernel = convolution_op->ukernel.gemm.mr1_function; |
| } |
| |
| convolution_op->context.gemm = (struct gemm_context) { |
| .k_scaled = group_input_channels << log2_input_element_size, |
| .a = input, |
| .a_stride = convolution_op->input_pixel_stride << log2_input_element_size, |
| .packed_w = convolution_op->packed_weights, |
| .w_stride = w_stride, |
| .wg_stride = w_stride * round_up(group_output_channels, nr), |
| .c = output, |
| .cm_stride = convolution_op->output_pixel_stride << log2_output_element_size, |
| .cn_stride = nr << log2_output_element_size, |
| .cg_stride = group_output_channels << log2_output_element_size, |
| .log2_csize = log2_output_element_size, |
| .ukernel = gemm_ukernel, |
| }; |
| memcpy(&convolution_op->context.gemm.params, params, sizeof(convolution_op->context.gemm.params)); |
| |
| size_t nc = group_output_channels; |
| if (num_threads > 1) { |
| const size_t num_other_tiles = groups * divide_round_up(batch_output_size, mr); |
| const size_t target_tiles_per_thread = 5; |
| const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread); |
| if (max_nc < nc) { |
| nc = min(nc, divide_round_up(nc, max_nc * nr) * nr); |
| } |
| } |
| if (groups == 1) { |
| convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d; |
| convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm; |
| convolution_op->compute.range[0] = batch_output_size; |
| convolution_op->compute.range[1] = group_output_channels; |
| convolution_op->compute.tile[0] = mr; |
| convolution_op->compute.tile[1] = nc; |
| } else { |
| convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d; |
| convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_ggemm; |
| convolution_op->compute.range[0] = groups; |
| convolution_op->compute.range[1] = batch_output_size; |
| convolution_op->compute.range[2] = group_output_channels; |
| convolution_op->compute.tile[0] = mr; |
| convolution_op->compute.tile[1] = nc; |
| } |
| convolution_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |
| case xnn_ukernel_type_igemm: |
| { |
| const size_t groups = convolution_op->groups; |
| const size_t kernel_height = convolution_op->kernel_height; |
| const size_t kernel_width = convolution_op->kernel_width; |
| const size_t kernel_size = kernel_height * kernel_width; |
| const size_t output_height = convolution_op->output_height; |
| const size_t output_width = convolution_op->output_width; |
| const size_t output_size = output_height * output_width; |
| |
| uint32_t mr = convolution_op->ukernel.igemm.mr; |
| const uint32_t nr = convolution_op->ukernel.igemm.nr; |
| xnn_igemm_ukernel_function igemm_ukernel = convolution_op->ukernel.igemm.default_function; |
| if (output_size == 1 && convolution_op->ukernel.igemm.mr1_function != NULL) { |
| mr = 1; |
| igemm_ukernel = convolution_op->ukernel.igemm.mr1_function; |
| } |
| |
| const size_t tiled_output_size = round_up(output_size, mr); |
| const size_t indirection_buffer_size = sizeof(void*) * kernel_size * tiled_output_size; |
| |
| if (input_height != convolution_op->last_input_height || |
| input_width != convolution_op->last_input_width) |
| { |
| const void** indirection_buffer = (const void**) realloc(convolution_op->indirection_buffer, indirection_buffer_size); |
| if (indirection_buffer == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size); |
| return xnn_status_out_of_memory; |
| } |
| convolution_op->indirection_buffer = indirection_buffer; |
| convolution_op->last_input = input; |
| convolution_op->last_input_height = input_height; |
| convolution_op->last_input_width = input_width; |
| |
| xnn_indirection_init_conv2d(convolution_op, mr, log2_input_element_size); |
| } |
| |
| const size_t group_input_channels = convolution_op->group_input_channels; |
| const size_t w_stride = (round_up_po2(group_input_channels, convolution_op->ukernel.igemm.kr) * kernel_size << log2_filter_element_size) + bias_element_size; |
| const size_t group_output_channels = convolution_op->group_output_channels; |
| convolution_op->context.igemm = (struct igemm_context) { |
| .ks = kernel_size, |
| .ks_scaled = kernel_size * mr * sizeof(void*), |
| .kc = group_input_channels << log2_input_element_size, |
| .w_stride = w_stride, |
| .indirect_a = convolution_op->indirection_buffer, |
| .a_offset = (size_t) ((uintptr_t) input - (uintptr_t) convolution_op->last_input), |
| .zero = convolution_op->zero_buffer, |
| .packed_w = convolution_op->packed_weights, |
| .c = convolution_op->output, |
| .cm_stride = convolution_op->output_pixel_stride << log2_output_element_size, |
| .cn_stride = nr << log2_output_element_size, |
| .ga_stride = group_input_channels << log2_input_element_size, |
| .gw_stride = w_stride * round_up(group_output_channels, nr), |
| .gc_stride = group_output_channels << log2_output_element_size, |
| .ba_stride = input_height * input_width * convolution_op->input_pixel_stride << log2_input_element_size, |
| .bc_stride = output_size * convolution_op->output_pixel_stride << log2_output_element_size, |
| .log2_csize = log2_output_element_size, |
| .ukernel = igemm_ukernel, |
| }; |
| memcpy(&convolution_op->context.igemm.params, params, sizeof(convolution_op->context.igemm.params)); |
| |
| size_t nc = group_output_channels; |
| if (num_threads > 1) { |
| const size_t num_other_tiles = groups * batch_size * divide_round_up(output_size, mr); |
| const size_t target_tiles_per_thread = 5; |
| const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread); |
| if (max_nc < nc) { |
| nc = min(nc, divide_round_up(nc, max_nc * nr) * nr); |
| } |
| } |
| if (groups == 1) { |
| convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d; |
| convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_igemm; |
| convolution_op->compute.range[0] = batch_size; |
| convolution_op->compute.range[1] = output_size; |
| convolution_op->compute.range[2] = group_output_channels; |
| convolution_op->compute.tile[0] = mr; |
| convolution_op->compute.tile[1] = nc; |
| } else { |
| convolution_op->compute.type = xnn_parallelization_type_4d_tile_2d; |
| convolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_gigemm; |
| convolution_op->compute.range[0] = batch_size; |
| convolution_op->compute.range[1] = groups; |
| convolution_op->compute.range[2] = output_size; |
| convolution_op->compute.range[3] = group_output_channels; |
| convolution_op->compute.tile[0] = mr; |
| convolution_op->compute.tile[1] = nc; |
| } |
| convolution_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |
| case xnn_ukernel_type_dwconv: |
| { |
| size_t valid_batch_size = 0; |
| if (input == convolution_op->last_input && |
| input_height == convolution_op->last_input_height && |
| input_width == convolution_op->last_input_width) |
| { |
| valid_batch_size = convolution_op->valid_batch_size; |
| if (batch_size <= valid_batch_size) { |
| convolution_op->compute.range[0] = batch_size * convolution_op->output_height; |
| convolution_op->state = xnn_run_state_ready; |
| return xnn_status_success; |
| } |
| } |
| |
| const size_t kernel_height = convolution_op->kernel_height; |
| const size_t kernel_width = convolution_op->kernel_width; |
| const size_t kernel_size = kernel_height * kernel_width; |
| const size_t output_height = convolution_op->output_height; |
| const size_t output_width = convolution_op->output_width; |
| const size_t step_width = convolution_op->dilation_width == 1 ? convolution_op->stride_width : kernel_width; |
| const size_t step_height = kernel_size + (output_width * step_width - 1) * kernel_height; |
| const size_t indirection_buffer_size = sizeof(void*) * batch_size * output_height * step_height; |
| |
| const void** indirection_buffer = |
| (const void**) realloc(convolution_op->indirection_buffer, indirection_buffer_size); |
| if (indirection_buffer == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size); |
| return xnn_status_out_of_memory; |
| } |
| convolution_op->indirection_buffer = indirection_buffer; |
| |
| xnn_indirection_init_dwconv2d(convolution_op, valid_batch_size, step_height, step_width, log2_input_element_size); |
| |
| const size_t groups = convolution_op->groups; |
| convolution_op->context.dwconv = (struct dwconv_context) { |
| .groups = groups, |
| .indirection_buffer = convolution_op->indirection_buffer, |
| .indirection_buffer_row_stride = step_height, |
| .indirection_buffer_col_stride = kernel_height * step_width * sizeof(void*), |
| .packed_weights = convolution_op->packed_weights, |
| .output = convolution_op->output, |
| .output_width = output_width, |
| .output_row_stride = output_width * convolution_op->output_pixel_stride << log2_output_element_size, |
| .output_col_increment = (convolution_op->output_pixel_stride - groups) << log2_output_element_size, |
| .unipass_ukernel = convolution_op->ukernel.dwconv.unipass_function, |
| }; |
| memcpy(&convolution_op->context.dwconv.params, params, sizeof(convolution_op->context.dwconv.params)); |
| |
| convolution_op->compute.type = xnn_parallelization_type_1d; |
| convolution_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_dwconv_unipass; |
| convolution_op->compute.range[0] = batch_size * output_height; |
| convolution_op->state = xnn_run_state_ready; |
| |
| convolution_op->last_input = input; |
| convolution_op->last_input_height = input_height; |
| convolution_op->last_input_width = input_width; |
| convolution_op->valid_batch_size = max(valid_batch_size, batch_size); |
| |
| return xnn_status_success; |
| } |
| case xnn_ukernel_type_vmulcaddc: |
| { |
| const size_t batch_output_size = batch_size * convolution_op->output_height * convolution_op->output_width; |
| |
| convolution_op->context.vmulcaddc = (struct vmulcaddc_context) { |
| .n = convolution_op->groups << log2_input_element_size, |
| .x = input, |
| .x_stride = convolution_op->input_pixel_stride << log2_input_element_size, |
| .w = convolution_op->packed_weights, |
| .y = output, |
| .y_stride = convolution_op->output_pixel_stride << log2_output_element_size, |
| .ukernel = convolution_op->ukernel.vmulcaddc.function, |
| }; |
| memcpy(&convolution_op->context.vmulcaddc.params, params, sizeof(convolution_op->context.vmulcaddc.params)); |
| |
| size_t mc = batch_output_size; |
| if (num_threads > 1) { |
| const size_t target_tiles_per_thread = 5; |
| const size_t max_mc = divide_round_up(batch_output_size, num_threads * target_tiles_per_thread); |
| if (max_mc < mc) { |
| const uint32_t mr = convolution_op->ukernel.vmulcaddc.mr; |
| mc = min(mc, divide_round_up(mc, max_mc * mr) * mr); |
| } |
| } |
| convolution_op->compute.type = xnn_parallelization_type_1d_tile_1d; |
| convolution_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_vmulcaddc; |
| convolution_op->compute.range[0] = batch_output_size; |
| convolution_op->compute.tile[0] = mc; |
| convolution_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |
| default: |
| XNN_UNREACHABLE; |
| } |
| } |
| |
| enum xnn_status xnn_setup_convolution2d_nhwc_q8( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool) |
| { |
| if (convolution_op->type != xnn_operator_type_convolution_q8) { |
| xnn_log_error("failed to setup Convolution (Q8) operator: operator type mismatch"); |
| return xnn_status_invalid_parameter; |
| } |
| |
| return setup_convolution2d_nhwc( |
| convolution_op, |
| batch_size, input_height, input_width, |
| input, output, |
| 0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */, |
| 0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */, |
| sizeof(int32_t) /* sizeof(bias element) */, |
| 0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */, |
| &convolution_op->q8_gemm_params, |
| pthreadpool_get_threads_count(threadpool)); |
| } |
| |
| enum xnn_status xnn_setup_convolution2d_nhwc_f32( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool) |
| { |
| if (convolution_op->type != xnn_operator_type_convolution_f32) { |
| xnn_log_error("failed to setup Convolution (F32) operator: operator type mismatch"); |
| return xnn_status_invalid_parameter; |
| } |
| |
| return setup_convolution2d_nhwc( |
| convolution_op, |
| batch_size, input_height, input_width, |
| input, output, |
| 2 /* log2(sizeof(input element)) = log2(sizeof(float)) */, |
| 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */, |
| sizeof(float) /* sizeof(bias element) */, |
| 2 /* log2(sizeof(output element)) = log2(sizeof(float)) */, |
| &convolution_op->f32_output_params, |
| pthreadpool_get_threads_count(threadpool)); |
| } |