blob: bd7bd880bdb29c521249220d1c659de0dc13fb88 [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/qs8-gemm/MRx4c8-sse.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <tmmintrin.h>
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
void xnn_qs8_gemm_minmax_gemmlowp_ukernel_2x4c8__ssse3_ld128(
size_t mr,
size_t nc,
size_t kc,
const int8_t* restrict a,
size_t a_stride,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(mr != 0);
assert(mr <= 2);
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(int8_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
kc = round_up_po2(kc, 8);
const int8_t* a0 = a;
int8_t* c0 = c;
const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
if XNN_UNPREDICTABLE(mr != 2) {
a1 = a0;
c1 = c0;
}
do {
__m128i vacc0x0 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[0]);
__m128i vacc0x1 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[1]);
__m128i vacc0x2 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[2]);
__m128i vacc0x3 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[3]);
__m128i vacc1x0 = vacc0x0;
__m128i vacc1x1 = vacc0x1;
__m128i vacc1x2 = vacc0x2;
__m128i vacc1x3 = vacc0x3;
w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
size_t k = 0;
while (k < kc) {
const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
const __m128i vxa0 = _mm_unpacklo_epi8(va0, _mm_cmpgt_epi8(_mm_setzero_si128(), va0));
a0 += 8;
const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
const __m128i vxa1 = _mm_unpacklo_epi8(va1, _mm_cmpgt_epi8(_mm_setzero_si128(), va1));
a1 += 8;
const __m128i vb01 = _mm_load_si128((const __m128i*) w);
const __m128i vsb01 = _mm_cmpgt_epi8(_mm_setzero_si128(), vb01);
const __m128i vxb0 = _mm_unpacklo_epi8(vb01, vsb01);
const __m128i vxb1 = _mm_unpackhi_epi8(vb01, vsb01);
vacc0x0 = _mm_add_epi32(vacc0x0, _mm_madd_epi16(vxa0, vxb0));
vacc0x1 = _mm_add_epi32(vacc0x1, _mm_madd_epi16(vxa0, vxb1));
vacc1x0 = _mm_add_epi32(vacc1x0, _mm_madd_epi16(vxa1, vxb0));
vacc1x1 = _mm_add_epi32(vacc1x1, _mm_madd_epi16(vxa1, vxb1));
const __m128i vb23 = _mm_load_si128((const __m128i*) ((uintptr_t) w + 16 * sizeof(int8_t)));
const __m128i vsb23 = _mm_cmpgt_epi8(_mm_setzero_si128(), vb23);
const __m128i vxb2 = _mm_unpacklo_epi8(vb23, vsb23);
const __m128i vxb3 = _mm_unpackhi_epi8(vb23, vsb23);
vacc0x2 = _mm_add_epi32(vacc0x2, _mm_madd_epi16(vxa0, vxb2));
vacc0x3 = _mm_add_epi32(vacc0x3, _mm_madd_epi16(vxa0, vxb3));
vacc1x2 = _mm_add_epi32(vacc1x2, _mm_madd_epi16(vxa1, vxb2));
vacc1x3 = _mm_add_epi32(vacc1x3, _mm_madd_epi16(vxa1, vxb3));
w = (const void*) ((uintptr_t) w + 32 * sizeof(int8_t));
k += 8 * sizeof(int8_t);
}
const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1);
const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3);
const __m128i vacc1x01 = _mm_hadd_epi32(vacc1x0, vacc1x1);
const __m128i vacc1x23 = _mm_hadd_epi32(vacc1x2, vacc1x3);
__m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23);
__m128i vacc1x0123 = _mm_hadd_epi32(vacc1x01, vacc1x23);
const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.multiplier);
const __m128i vrounding = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.rounding);
const __m128i vnmask0x0123 = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc0x0123);
const __m128i vnmask1x0123 = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc1x0123);
const __m128i vabsacc0x0123 = _mm_abs_epi32(vacc0x0123);
const __m128i vabsacc1x0123 = _mm_abs_epi32(vacc1x0123);
const __m128i vabsacc0x1133 = _mm_shuffle_epi32(vabsacc0x0123, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vabsacc1x1133 = _mm_shuffle_epi32(vabsacc1x0123, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vabsprod0x02 = _mm_mul_epu32(vabsacc0x0123, vmultiplier);
const __m128i vabsprod1x02 = _mm_mul_epu32(vabsacc1x0123, vmultiplier);
const __m128i vnmask0x02 = _mm_shuffle_epi32(vnmask0x0123, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i vnmask1x02 = _mm_shuffle_epi32(vnmask1x0123, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i vprod0x02 = _mm_sub_epi64(_mm_xor_si128(vabsprod0x02, vnmask0x02), vnmask0x02);
const __m128i vprod1x02 = _mm_sub_epi64(_mm_xor_si128(vabsprod1x02, vnmask1x02), vnmask1x02);
const __m128i vq31prod0x02 = _mm_srli_epi64(_mm_add_epi64(vprod0x02, vrounding), 31);
const __m128i vq31prod1x02 = _mm_srli_epi64(_mm_add_epi64(vprod1x02, vrounding), 31);
const __m128i vabsprod0x13 = _mm_mul_epu32(vabsacc0x1133, vmultiplier);
const __m128i vabsprod1x13 = _mm_mul_epu32(vabsacc1x1133, vmultiplier);
const __m128i vnmask0x13 = _mm_shuffle_epi32(vnmask0x0123, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vnmask1x13 = _mm_shuffle_epi32(vnmask1x0123, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vprod0x13 = _mm_sub_epi64(_mm_xor_si128(vabsprod0x13, vnmask0x13), vnmask0x13);
const __m128i vprod1x13 = _mm_sub_epi64(_mm_xor_si128(vabsprod1x13, vnmask1x13), vnmask1x13);
const __m128i vq31prod0x13 = _mm_srli_epi64(_mm_add_epi64(vprod0x13, vrounding), 31);
const __m128i vq31prod1x13 = _mm_srli_epi64(_mm_add_epi64(vprod1x13, vrounding), 31);
const __m128i vq31prod0x0213 = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(vq31prod0x02), _mm_castsi128_ps(vq31prod0x13), _MM_SHUFFLE(2, 0, 2, 0)));
const __m128i vq31prod1x0213 = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(vq31prod1x02), _mm_castsi128_ps(vq31prod1x13), _MM_SHUFFLE(2, 0, 2, 0)));
const __m128i vq31prod0x0123 = _mm_shuffle_epi32(vq31prod0x0213, _MM_SHUFFLE(3, 1, 2, 0));
const __m128i vq31prod1x0123 = _mm_shuffle_epi32(vq31prod1x0213, _MM_SHUFFLE(3, 1, 2, 0));
const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.remainder_mask);
const __m128i vrem0x0123 =
_mm_add_epi32(_mm_and_si128(vq31prod0x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod0x0123));
const __m128i vrem1x0123 =
_mm_add_epi32(_mm_and_si128(vq31prod1x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod1x0123));
const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.remainder_threshold);
const __m128i vshift = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.shift);
vacc0x0123 =
_mm_sub_epi32(_mm_sra_epi32(vq31prod0x0123, vshift), _mm_cmpgt_epi32(vrem0x0123, vremainder_threshold));
vacc1x0123 =
_mm_sub_epi32(_mm_sra_epi32(vq31prod1x0123, vshift), _mm_cmpgt_epi32(vrem1x0123, vremainder_threshold));
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.output_zero_point);
__m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->gemmlowp_sse2.output_max);
vacc01x0123 = _mm_min_epi16(_mm_max_epi16(vacc01x0123, voutput_min), voutput_max);
__m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
if (nc >= 4) {
*((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
vout = _mm_srli_si128(vout, 4);
*((uint32_t*) c1) = (uint32_t) _mm_cvtsi128_si32(vout);
c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
a0 = (const int8_t*) ((uintptr_t) a0 - kc);
a1 = (const int8_t*) ((uintptr_t) a1 - kc);
nc -= 4;
} else {
if (nc & 2) {
*((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
c0 += 2;
*((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
c1 += 2;
vout = _mm_srli_epi32(vout, 16);
}
if (nc & 1) {
*((int8_t*) c0) = (int8_t) _mm_cvtsi128_si32(vout);
*((int8_t*) c1) = (int8_t) _mm_extract_epi16(vout, 2);
}
nc = 0;
}
} while (nc != 0);
}