| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/requantization.h> |
| #include <xnnpack.h> |
| |
| |
| class ConvHWCMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline ConvHWCMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) { |
| this->output_channels_tile_ = output_channels_tile; |
| return *this; |
| } |
| |
| inline uint32_t output_channels_tile() const { |
| return this->output_channels_tile_; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding(uint32_t padding) { |
| this->padding_top_ = padding; |
| this->padding_right_ = padding; |
| this->padding_bottom_ = padding; |
| this->padding_left_ = padding; |
| return *this; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding_height(uint32_t padding_height) { |
| this->padding_top_ = padding_height; |
| this->padding_bottom_ = padding_height; |
| return *this; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding_width(uint32_t padding_width) { |
| this->padding_right_ = padding_width; |
| this->padding_left_ = padding_width; |
| return *this; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding_top(uint32_t padding_top) { |
| this->padding_top_ = padding_top; |
| return *this; |
| } |
| |
| inline uint32_t padding_top() const { |
| return this->padding_top_; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding_right(uint32_t padding_right) { |
| this->padding_right_ = padding_right; |
| return *this; |
| } |
| |
| inline uint32_t padding_right() const { |
| return this->padding_right_; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding_bottom(uint32_t padding_bottom) { |
| this->padding_bottom_ = padding_bottom; |
| return *this; |
| } |
| |
| inline uint32_t padding_bottom() const { |
| return this->padding_bottom_; |
| } |
| |
| inline ConvHWCMicrokernelTester& padding_left(uint32_t padding_left) { |
| this->padding_left_ = padding_left; |
| return *this; |
| } |
| |
| inline uint32_t padding_left() const { |
| return this->padding_left_; |
| } |
| |
| inline ConvHWCMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) { |
| assert(input_height >= 1); |
| assert(input_width >= 1); |
| this->input_height_ = input_height; |
| this->input_width_ = input_width; |
| return *this; |
| } |
| |
| inline ConvHWCMicrokernelTester& input_height(uint32_t input_height) { |
| assert(input_height >= 1); |
| this->input_height_ = input_height; |
| return *this; |
| } |
| |
| inline uint32_t input_height() const { |
| return this->input_height_; |
| } |
| |
| inline ConvHWCMicrokernelTester& input_width(uint32_t input_width) { |
| assert(input_width >= 1); |
| this->input_width_ = input_width; |
| return *this; |
| } |
| |
| inline uint32_t input_width() const { |
| return this->input_width_; |
| } |
| |
| inline ConvHWCMicrokernelTester& input_channels(size_t input_channels) { |
| assert(input_channels >= 1); |
| this->input_channels_ = input_channels; |
| return *this; |
| } |
| |
| inline size_t input_channels() const { |
| return this->input_channels_; |
| } |
| |
| inline ConvHWCMicrokernelTester& output_channels(size_t output_channels) { |
| assert(output_channels >= 1); |
| this->output_channels_ = output_channels; |
| return *this; |
| } |
| |
| inline size_t output_channels() const { |
| return this->output_channels_; |
| } |
| |
| inline size_t packed_output_channels() const { |
| return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile(); |
| } |
| |
| inline ConvHWCMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size >= 1); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline ConvHWCMicrokernelTester& kernel_size(uint32_t kernel_size) { |
| assert(kernel_size >= 1); |
| this->kernel_height_ = kernel_size; |
| this->kernel_width_ = kernel_size; |
| return *this; |
| } |
| |
| inline ConvHWCMicrokernelTester& kernel_height(uint32_t kernel_height) { |
| assert(kernel_height >= 1); |
| this->kernel_height_ = kernel_height; |
| return *this; |
| } |
| |
| inline uint32_t kernel_height() const { |
| return this->kernel_height_; |
| } |
| |
| inline ConvHWCMicrokernelTester& kernel_width(uint32_t kernel_width) { |
| assert(kernel_width >= 1); |
| this->kernel_width_ = kernel_width; |
| return *this; |
| } |
| |
| inline uint32_t kernel_width() const { |
| return this->kernel_width_; |
| } |
| |
| inline ConvHWCMicrokernelTester& subsampling(uint32_t subsampling) { |
| assert(subsampling >= 1); |
| this->subsampling_height_ = subsampling; |
| this->subsampling_width_ = subsampling; |
| return *this; |
| } |
| |
| inline ConvHWCMicrokernelTester& subsampling_height(uint32_t subsampling_height) { |
| assert(subsampling_height >= 1); |
| this->subsampling_height_ = subsampling_height; |
| return *this; |
| } |
| |
| inline uint32_t subsampling_height() const { |
| return this->subsampling_height_; |
| } |
| |
| inline ConvHWCMicrokernelTester& subsampling_width(uint32_t subsampling_width) { |
| assert(subsampling_width >= 1); |
| this->subsampling_width_ = subsampling_width; |
| return *this; |
| } |
| |
| inline uint32_t subsampling_width() const { |
| return this->subsampling_width_; |
| } |
| |
| inline ConvHWCMicrokernelTester& output_y_start(uint32_t output_y_start) { |
| this->output_y_start_ = output_y_start; |
| return *this; |
| } |
| |
| inline uint32_t output_y_start() const { |
| return this->output_y_start_; |
| } |
| |
| inline ConvHWCMicrokernelTester& output_y_end(uint32_t output_y_end) { |
| this->output_y_end_ = output_y_end; |
| return *this; |
| } |
| |
| inline uint32_t output_y_end() const { |
| if (this->output_y_end_ == std::numeric_limits<uint32_t>::max()) { |
| return output_height(); |
| } else { |
| return this->output_y_end_; |
| } |
| } |
| |
| inline size_t input_pixel_stride() const { |
| return input_channels(); |
| } |
| |
| inline size_t output_pixel_stride() const { |
| return output_channels(); |
| } |
| |
| inline size_t output_height() const { |
| const size_t padded_input_height = padding_top() + input_height() + padding_bottom(); |
| if (padded_input_height <= kernel_height()) { |
| return 1; |
| } else { |
| return (padded_input_height - kernel_height()) / subsampling_height() + 1; |
| } |
| } |
| |
| inline size_t output_width() const { |
| const size_t padded_input_width = padding_left() + input_width() + padding_right(); |
| if (padded_input_width <= kernel_width()) { |
| return 1; |
| } else { |
| return (padded_input_width - kernel_width()) / subsampling_width() + 1; |
| } |
| } |
| |
| inline ConvHWCMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline ConvHWCMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline ConvHWCMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f32_conv_hwc_ukernel_function conv, Variant variant = Variant::Native) const { |
| ASSERT_LT(output_y_start(), output_height()); |
| ASSERT_LE(output_y_end(), output_height()); |
| ASSERT_GT(output_y_end(), output_y_start()); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng); |
| |
| std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
| batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels())); |
| std::vector<float> zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels()); |
| std::vector<float> kernel(output_channels() * kernel_height() * kernel_width() * input_channels()); |
| std::vector<float> bias(output_channels()); |
| std::vector<float> output(batch_size() * ((output_height() * output_width() - 1) * output_pixel_stride() + output_channels())); |
| std::vector<float> output_ref(batch_size() * output_height() * output_width() * output_channels()); |
| std::vector<float, AlignedAllocator<float, 32>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), nanf("")); |
| std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
| |
| xnn_pack_f32_dconv_oki_w( |
| output_channels(), |
| input_channels(), |
| output_channels_tile(), |
| kernel_height(), kernel_width(), |
| kernel.data(), bias.data(), packed_weights.data()); |
| |
| // Compute reference results, without clamping. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t oy = 0; oy < output_height(); oy++) { |
| for (size_t ox = 0; ox < output_width(); ox++) { |
| for (size_t oc = 0; oc < output_channels(); oc++) { |
| float acc = bias[oc]; |
| for (size_t ky = 0; ky < kernel_height(); ky++) { |
| const size_t iy = oy * subsampling_height() + ky - padding_top(); |
| if (iy < input_height()) { |
| for (size_t kx = 0; kx < kernel_width(); kx++) { |
| const size_t ix = ox * subsampling_width() + kx - padding_left(); |
| if (ix < input_width()) { |
| for (size_t ic = 0; ic < input_channels(); ic++) { |
| acc += |
| input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] * |
| kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic]; |
| } |
| } |
| } |
| } |
| } |
| output_ref[((i * output_height() + oy) * output_width() + ox) * output_channels() + oc] = acc; |
| } |
| } |
| } |
| } |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| |
| const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); |
| const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); |
| |
| // Clamp reference results. |
| for (float& value : output_ref) { |
| value = std::max(std::min(value, output_max), output_min); |
| } |
| |
| // Prepare output parameters. |
| xnn_f32_output_params output_params = { }; |
| switch (variant) { |
| case Variant::Native: |
| output_params = xnn_compute_f32_output_params(output_min, output_max); |
| break; |
| case Variant::Scalar: |
| output_params = xnn_compute_scalar_f32_output_params(output_min, output_max); |
| break; |
| } |
| |
| // Call optimized micro-kernel. |
| conv( |
| input_height(), input_width(), |
| output_y_start(), output_y_end(), |
| input.data(), zero.data(), packed_weights.data(), output.data(), |
| padding_top(), output_channels(), |
| output_pixel_stride() * output_width() * sizeof(float), |
| output_pixel_stride() * sizeof(float), |
| &output_params); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| for (size_t y = output_y_start(); y < output_y_end(); y++) { |
| for (size_t x = 0; x < output_width(); x++) { |
| for (size_t c = 0; c < output_channels(); c++) { |
| ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min) |
| << "(x, y) = (" << x << ", " << y << "), channel = " << c; |
| ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max) |
| << "(x, y) = (" << x << ", " << y << "), channel = " << c; |
| ASSERT_NEAR( |
| output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c], |
| output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], |
| 1.0e-4 * std::abs(output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c])) |
| << "(x, y) = (" << x << ", " << y << "), channel = " << c; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| uint32_t padding_top_{0}; |
| uint32_t padding_right_{0}; |
| uint32_t padding_bottom_{0}; |
| uint32_t padding_left_{0}; |
| size_t input_height_{1}; |
| size_t input_width_{1}; |
| size_t input_channels_{1}; |
| size_t output_channels_{1}; |
| uint32_t output_channels_tile_{1}; |
| size_t batch_size_{1}; |
| uint32_t kernel_height_{1}; |
| uint32_t kernel_width_{1}; |
| uint32_t subsampling_height_{1}; |
| uint32_t subsampling_width_{1}; |
| uint32_t output_y_start_{0}; |
| uint32_t output_y_end_{std::numeric_limits<uint32_t>::max()}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{1}; |
| }; |