| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <cstddef> |
| #include <cstdlib> |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack/params.h> |
| #include <xnnpack/scalar-utils.h> |
| |
| |
| class RequantizationTester { |
| public: |
| inline RequantizationTester& s(uint32_t s) { |
| this->s_ = s; |
| return *this; |
| } |
| |
| inline uint32_t s() const { |
| return this->s_; |
| } |
| |
| inline float scale() const { |
| return ldexpf(1.0f, -s()); |
| } |
| |
| inline RequantizationTester& zeroPoint(int32_t zeroPoint) { |
| this->zeroPoint_ = zeroPoint; |
| return *this; |
| } |
| |
| inline int32_t zeroPoint() const { |
| return this->zeroPoint_; |
| } |
| |
| inline RequantizationTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline RequantizationTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline RequantizationTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| /* |
| * Test that requantization of numbers ((i - zero point) * 2**s) with |
| * - scale = exp2(-s) |
| * - zero point in [0, 255] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void testExactDivideByPO2(requantization_function requantize) const { |
| ASSERT_GE(zeroPoint(), 0); |
| ASSERT_LE(zeroPoint(), 255); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| const int32_t maxI = (uint32_t(std::numeric_limits<int32_t>::max()) >> s()) + zeroPoint(); |
| const int32_t minI = -(-uint32_t(std::numeric_limits<int32_t>::min()) >> s()) + zeroPoint(); |
| for (int32_t i = 0; i < 256; i++) { |
| const int32_t clampedI = std::max(minI, std::min(maxI, i)); |
| inputs[i] = int32_t(uint32_t(clampedI - zeroPoint()) << s()); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zeroPoint(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i < 256; i++) { |
| const int32_t clampedI = std::max(minI, std::min(maxI, i)); |
| ASSERT_EQ(clampedI, outputs[i]) << "i = " << i << ", clamped i = " << clampedI << |
| ", min i = " << minI << ", max i = " << maxI << |
| ", s = " << s() << ", zero point = " << zeroPoint(); |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with |
| * - scale = exp2(-s) |
| * - zero point in [1, 255] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void testDivideByPO2WithRoundingUp(requantization_function requantize) { |
| ASSERT_GE(zeroPoint(), 0); |
| ASSERT_LE(zeroPoint(), 255); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| for (int32_t i = 0; i < 256; i++) { |
| const int64_t input = RequantizationTester::shiftLeft(i - zeroPoint(), s()) - |
| (INT64_C(1) << (s() - 1)) + (int64_t) (i <= zeroPoint()); |
| inputs[i] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zeroPoint(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i < 256; i++) { |
| const int64_t input = RequantizationTester::shiftLeft(i - zeroPoint(), s()) - |
| (INT64_C(1) << (s() - 1)) + (int64_t) (i <= zeroPoint()); |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, uint32_t(outputs[i])) << "i = " << i << ", input = " << input << |
| ", s = " << s() << ", zero point = " << zeroPoint(); |
| } |
| } |
| } |
| |
| /* |
| * Test that requantization of numbers (i * 2**s + sign(i - zero point) * 2**(s-1)) with |
| * - scale = exp2(-s) |
| * - zero point in [1, 255] |
| * - no output clamping |
| * produces exactly i, provided that ((i - zero point) * 2**s) does not overflow. |
| */ |
| void testDivideByPO2WithRoundingDown(requantization_function requantize) { |
| ASSERT_GE(zeroPoint(), 0); |
| ASSERT_LE(zeroPoint(), 255); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| for (int32_t i = 0; i < 256; i++) { |
| const int64_t input = RequantizationTester::shiftLeft(i - zeroPoint(), s()) + |
| (INT64_C(1) << (s() - 1)) - (int64_t) (i >= zeroPoint()); |
| inputs[i] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zeroPoint(), qmin(), qmax(), |
| outputs.data()); |
| for (int32_t i = 0; i < 256; i++) { |
| const int64_t input = RequantizationTester::shiftLeft(i - zeroPoint(), s()) + |
| (INT64_C(1) << (s() - 1)) - (int64_t) (i >= zeroPoint()); |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, uint32_t(outputs[i])) << "i = " << i << ", input = " << input << |
| ", s = " << s() << ", zero point = " << zeroPoint(); |
| } |
| } |
| } |
| |
| void testDivideByPO2WithRoundingAway(requantization_function requantize) { |
| ASSERT_GE(zeroPoint(), 0); |
| ASSERT_LE(zeroPoint(), 255); |
| |
| /* Note: need s >= 1 to ensure scale = exp2(-s) < 1.0 */ |
| ASSERT_GE(s(), 1); |
| ASSERT_LT(s(), 32); |
| |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| for (int32_t i = 0; i < 256; i++) { |
| int64_t input = RequantizationTester::shiftLeft(i - zeroPoint(), s()); |
| if (input > 0) { |
| input -= INT64_C(1) << (s() - 1); |
| } else if (input < 0) { |
| input += INT64_C(1) << (s() - 1); |
| } |
| inputs[i] = int32_t(input); |
| } |
| requantize(inputs.size(), inputs.data(), |
| scale(), zeroPoint(), qmin(), qmax(), |
| outputs.data()); |
| for (uint32_t i = 0; i < 256; i++) { |
| int64_t input = RequantizationTester::shiftLeft(i - zeroPoint(), s()); |
| if (input > 0) { |
| input -= INT64_C(1) << (s() - 1); |
| } else if (input < 0) { |
| input += INT64_C(1) << (s() - 1); |
| } |
| if (int32_t(input) == input) { |
| ASSERT_EQ(i, uint32_t(outputs[i])) << "i = " << i << ", input = " << input << |
| ", s = " << s() << ", zero point = " << zeroPoint(); |
| } |
| } |
| } |
| |
| void testSpecialCases(requantization_function requantize) { |
| std::vector<int32_t> inputs(256); |
| std::vector<uint8_t> outputs(inputs.size()); |
| |
| std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::min()); |
| for (int32_t zeroPoint = 0; zeroPoint < 256; zeroPoint++) { |
| requantize( |
| inputs.size(), |
| inputs.data(), |
| ldexpf(1.0f, -32) /* scale */, |
| zeroPoint /* zero point */, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| ASSERT_EQ(std::max(int32_t(0), zeroPoint - 1), *std::min_element(outputs.cbegin(), outputs.cend())); |
| } |
| |
| std::fill(inputs.begin(), inputs.end(), std::numeric_limits<int32_t>::max()); |
| requantize( |
| inputs.size(), |
| inputs.data(), |
| 0x1.FFFFFEp-1f /* scale */, |
| std::numeric_limits<uint8_t>::max() /* zero point */, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| ASSERT_EQ(std::numeric_limits<uint8_t>::max(), outputs[i]); |
| } |
| } |
| |
| void testRandomCasesPrecise(requantization_function requantize) { |
| std::random_device random_device; |
| std::mt19937 mtRng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto rng = std::bind(std::uniform_int_distribution<uint8_t>(), mtRng); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<uint8_t> outputs(inputs.size()); |
| |
| const uint8_t zeroPoint = UINT8_C(128); |
| std::uniform_real_distribution<float> scaleDistribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scaleDistribution(mtRng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t approximateOutput = rng(); |
| const int32_t input = int32_t(double(approximateOutput) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zeroPoint, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t referenceOutput = |
| scalar_requantize_precise( |
| inputs[i], scale, zeroPoint, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max()); |
| ASSERT_EQ(uint32_t(referenceOutput), uint32_t(outputs[i])); |
| } |
| } |
| } |
| |
| void testRandomCasesApproximate(requantization_function requantize) { |
| std::random_device random_device; |
| std::mt19937 mtRng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto rng = std::bind(std::uniform_int_distribution<uint8_t>(), mtRng); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<uint8_t> outputs(inputs.size()); |
| |
| const uint8_t zeroPoint = UINT8_C(128); |
| std::uniform_real_distribution<float> scaleDistribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scaleDistribution(mtRng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t approximateOutput = rng(); |
| const int32_t input = int32_t(double(approximateOutput) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zeroPoint, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const double referenceOutput = |
| RequantizationTester::requantizeApproximate( |
| inputs[i], scale, zeroPoint, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max()); |
| ASSERT_LE(fabs(referenceOutput - double(outputs[i])), 0.55) << |
| "input = " << inputs[i] << |
| ", output = " << uint32_t(outputs[i]) << ", reference output = " << referenceOutput; |
| } |
| } |
| } |
| |
| void testRandomCasesAgainstReference(requantization_function requantize, requantization_function requantizeReference) { |
| std::random_device random_device; |
| std::mt19937 mtRng(random_device()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| auto rng = std::bind(std::uniform_int_distribution<uint8_t>(), mtRng); |
| |
| std::vector<int32_t> inputs(4096); |
| std::vector<uint8_t> outputs(inputs.size()); |
| std::vector<uint8_t> referenceOutputs(inputs.size()); |
| |
| const uint8_t zeroPoint = UINT8_C(128); |
| std::uniform_real_distribution<float> scaleDistribution(0x1.000000p-23f, 0x1.FFFFFEp-1f); |
| const float scale = scaleDistribution(mtRng); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| const uint8_t approximateOutput = rng(); |
| const int32_t input = int32_t(double(approximateOutput) / double(scale)); |
| inputs[i] = input; |
| } |
| |
| requantize( |
| inputs.size(), inputs.data(), scale, zeroPoint, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| outputs.data()); |
| |
| requantizeReference( |
| inputs.size(), inputs.data(), scale, zeroPoint, |
| std::numeric_limits<uint8_t>::min(), |
| std::numeric_limits<uint8_t>::max(), |
| referenceOutputs.data()); |
| |
| /* Ensure that outputs are not all identical, as in this case Test doesn't validate much */ |
| ASSERT_NE( |
| *std::max_element(outputs.cbegin(), outputs.cend()), |
| *std::min_element(outputs.cbegin(), outputs.cend())); |
| |
| for (size_t i = 0; i < inputs.size(); i++) { |
| ASSERT_EQ(uint32_t(referenceOutputs[i]), uint32_t(outputs[i])); |
| } |
| } |
| } |
| |
| static inline int64_t shiftLeft(int64_t w, uint32_t n) { |
| return (int64_t) ((uint64_t) w << n); |
| } |
| |
| static inline double requantizeApproximate( |
| int32_t value, |
| float scale, |
| uint8_t zeroPoint, |
| uint8_t qmin, |
| uint8_t qmax) |
| { |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| |
| double clampedValue = double(value) * double(scale) + double(zeroPoint); |
| |
| const double fmin = double(qmin); |
| if (clampedValue < fmin) { |
| clampedValue = fmin; |
| } |
| |
| const double fmax = double(qmax); |
| if (clampedValue > fmax) { |
| clampedValue = fmax; |
| } |
| |
| return clampedValue; |
| } |
| |
| private: |
| size_t zeroPoint_{0}; |
| size_t s_{1}; |
| uint8_t qmin_{std::numeric_limits<uint8_t>::min()}; |
| uint8_t qmax_{std::numeric_limits<uint8_t>::max()}; |
| size_t iterations_{1}; |
| }; |