| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack/params.h> |
| |
| |
| class LUTNormMicrokernelTester { |
| public: |
| inline LUTNormMicrokernelTester& n(size_t n) { |
| assert(n != 0); |
| this->n_ = n; |
| return *this; |
| } |
| |
| inline size_t n() const { |
| return this->n_; |
| } |
| |
| inline LUTNormMicrokernelTester& inplace(bool inplace) { |
| this->inplace_ = inplace; |
| return *this; |
| } |
| |
| inline bool inplace() const { |
| return this->inplace_; |
| } |
| |
| inline LUTNormMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_u8_lut32norm_ukernel_function lutnorm) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng); |
| auto u32rng = std::bind( |
| std::uniform_int_distribution<uint32_t>(1, std::numeric_limits<uint32_t>::max() / (257 * n())), |
| rng); |
| |
| std::vector<uint8_t> x(n()); |
| std::vector<uint32_t> t(256); |
| std::vector<uint8_t> y(n()); |
| std::vector<float> y_ref(n()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), std::ref(u8rng)); |
| std::generate(t.begin(), t.end(), std::ref(u32rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(u8rng)); |
| } else { |
| std::fill(y.begin(), y.end(), 0xA5); |
| } |
| const uint8_t* x_data = inplace() ? y.data() : x.data(); |
| |
| // Compute reference results. |
| uint32_t sum = 0; |
| for (size_t i = 0; i < n(); i++) { |
| sum += t[x_data[i]]; |
| } |
| for (size_t i = 0; i < n(); i++) { |
| y_ref[i] = 256.0f * float(t[x_data[i]]) / float(sum); |
| y_ref[i] = std::min(y_ref[i], 255.0f); |
| } |
| |
| // Call optimized micro-kernel. |
| lutnorm(n(), x_data, t.data(), y.data()); |
| |
| // Verify results. |
| for (size_t i = 0; i < n(); i++) { |
| ASSERT_NEAR(y_ref[i], float(y[i]), 0.5f) |
| << "at position " << i << ", n = " << n() << ", sum = " << sum; |
| } |
| } |
| } |
| |
| private: |
| size_t n_{1}; |
| bool inplace_{false}; |
| size_t iterations_{15}; |
| }; |