| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stddef.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/intrinsics-polyfill.h> |
| #include <xnnpack/requantization-stubs.h> |
| |
| |
| void xnn_qu8_requantize_fp32__neon( |
| size_t n, |
| const int32_t* input, |
| float scale, |
| uint8_t zero_point, |
| uint8_t qmin, |
| uint8_t qmax, |
| uint8_t* output) |
| { |
| assert(n % 16 == 0); |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| |
| const float32x4_t vscale = vdupq_n_f32(scale); |
| #ifdef __aarch64__ |
| const int16x8_t vzero_point = vdupq_n_s16((int16_t)(uint16_t) zero_point); |
| const uint8x16_t vqmin = vdupq_n_u8(qmin); |
| const uint8x16_t vqmax = vdupq_n_u8(qmax); |
| #else |
| const float32x4_t vfmin = vdupq_n_f32((float) ((int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point)); |
| const float32x4_t vfmax = vdupq_n_f32((float) ((int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point)); |
| const float32x4_t vfmagic = vdupq_n_f32(12582912.0f); |
| const int32x4_t vimagic = vdupq_n_s32(INT32_C(0x4B400000) - (int32_t)(uint32_t) zero_point); |
| #endif |
| for (; n != 0; n -= 16) { |
| const int32x4_t x = vld1q_s32(input); |
| const int32x4_t y = vld1q_s32(input + 4); |
| const int32x4_t z = vld1q_s32(input + 8); |
| const int32x4_t w = vld1q_s32(input + 12); |
| input += 16; |
| |
| // Convert int32_t input to FP32 and multiply by FP32 scale. |
| // Both operations involve statistically unbiased roundings: |
| // - Large int32_t values can't be exactly represented as FP32. The conversion instruction in ARM NEON would |
| // round it to nearest FP32 value with ties to even. |
| // - Product of two FP32 values is generally not exactly representation as an FP32 value, and will be rounded |
| // to nearest FP32 value with ties to even. |
| const float32x4_t x_scaled = vmulq_f32(vcvtq_f32_s32(x), vscale); |
| const float32x4_t y_scaled = vmulq_f32(vcvtq_f32_s32(y), vscale); |
| const float32x4_t z_scaled = vmulq_f32(vcvtq_f32_s32(z), vscale); |
| const float32x4_t w_scaled = vmulq_f32(vcvtq_f32_s32(w), vscale); |
| |
| #ifdef __aarch64__ |
| // Leverage "Floating-point Convert to Signed integer, rounding to nearest with ties to even" instruction. |
| // This is an ARMv8 instruction (always available in AArch64), which saturates result on overflow. |
| // We don't need to specifically consider saturated results, they will be clamped at the last stage. |
| const int32x4_t x_rounded = vcvtnq_s32_f32(x_scaled); |
| const int32x4_t y_rounded = vcvtnq_s32_f32(y_scaled); |
| const int32x4_t z_rounded = vcvtnq_s32_f32(z_scaled); |
| const int32x4_t w_rounded = vcvtnq_s32_f32(w_scaled); |
| |
| // Standard final sequence on ARM NEON: |
| // - Pack to int16_t and saturate |
| // - Add zero point |
| // - Pack to uint8_t and saturate |
| // - Clamp between qmin and qmax |
| const int16x8_t xy_packed = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(x_rounded), y_rounded), vzero_point); |
| const int16x8_t zw_packed = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(z_rounded), w_rounded), vzero_point); |
| const uint8x16_t xyzw_packed = vqmovun_high_s16(vqmovun_s16(xy_packed), zw_packed); |
| const uint8x16_t xyzw_clamped = vmaxq_u8(vminq_u8(xyzw_packed, vqmax), vqmin); |
| |
| vst1q_u8(output, xyzw_clamped); |
| output += 16; |
| #else |
| // ARMv7 NEON offers only a floating-point to integer conversion instruction with rounding towards zero. |
| // In lieu of conversion instruction with rounding-to-nearest-even, we use a magic trick of adding a large |
| // number (1.5 * 2**23) to scaled value to cause rounding to integer, and then substracing this magic number as |
| // integer. This trick works only in a limited range (absolute value of input must be less than 2**22), so |
| // generally we have to clamp input to this range before using the magic. However, clamping to any smaller range |
| // works just as well, and thus we clamp to [qmin - zero point, qmax - zero point] range so that after we add |
| // zero point to the result, it gets into target [qmin, qmax] range. |
| const float32x4_t x_clamped = vminq_f32(vmaxq_f32(x_scaled, vfmin), vfmax); |
| const float32x4_t y_clamped = vminq_f32(vmaxq_f32(y_scaled, vfmin), vfmax); |
| const float32x4_t z_clamped = vminq_f32(vmaxq_f32(z_scaled, vfmin), vfmax); |
| const float32x4_t w_clamped = vminq_f32(vmaxq_f32(w_scaled, vfmin), vfmax); |
| |
| // Conversion to integer using the "magic trick". Rounding is performed in the output of addition operation, |
| // and result is rounded to nearest even integer with ties to even. |
| const int32x4_t x_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(x_clamped, vfmagic)), vimagic); |
| const int32x4_t y_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(y_clamped, vfmagic)), vimagic); |
| const int32x4_t z_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(z_clamped, vfmagic)), vimagic); |
| const int32x4_t w_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(w_clamped, vfmagic)), vimagic); |
| |
| // Select low 8 bits of each 32-bit integer in the vectors for the output. |
| // Since result is already clamped to [qmin, qmax] subrange of [0, 255], saturation is not needed. |
| const int16x8_t xy_packed = vcombine_s16(vmovn_s32(x_biased), vmovn_s32(y_biased)); |
| const int16x8_t zw_packed = vcombine_s16(vmovn_s32(z_biased), vmovn_s32(w_biased)); |
| const uint8x16_t xyzw_packed = vreinterpretq_u8_s8(vcombine_s8(vmovn_s16(xy_packed), vmovn_s16(zw_packed))); |
| |
| // AArch32 version: |
| // 4x VCVT.F32.S32 Qd, Qm |
| // 4x VMUL.F32 Qd, Qm, Qn |
| // 4x VMIN.F32 Qd, Qm, Qn |
| // 4x VMAX.F32 Qd, Qm, Qn |
| // 4x VADD.F32 Qd, Qm, Qn |
| // 4x VSUB.S32 Qd, Qm, Qn |
| // 4x VMOVN.I32 Dd, Qm |
| // 2x VMOVN.I16 Dd, Qm |
| // --------------------- |
| // 30 instructions total |
| // |
| // AArch64 version: |
| // 4x SCVTF Vd.4S, Vn.4S |
| // 4x FMUL Vd.4S, Vn.4S, Vm.4S |
| // 4x FCVTNS Vd.4S, Vn.4S |
| // 2x SQXTN Vd.4H, Vn.4S |
| // 2x SQXTN2 Vd.8H, Vn.4S |
| // 2x SQADD Vd.8H, Vn.8H, Vm.8H |
| // 1x SQXTUN Vd.8B, Vn.8H |
| // 1x SQXTUN2 Vd.16B, Vn.8H |
| // 1x UMIN Vd.16B, Vn.16B, Vm.16B |
| // 1x UMAX Vd.16B, Vn.16B, Vm.16B |
| // --------------------- |
| // 22 instructions total |
| |
| vst1q_u8(output, xyzw_packed); |
| output += 16; |
| #endif |
| } |
| } |