| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stddef.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/math-stubs.h> |
| |
| |
| void xnn_math_f32_exp__avx2_perm_p4( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (16 * sizeof(float)) == 0); |
| |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p23f); |
| // The smallest x for which expf(x) is non-zero. |
| const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p6f); |
| // The largest x for which expf(x) is finite. |
| const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep6f); |
| const __m256 vlog2e_x8 = _mm256_set1_ps(0x1.715476p3f); |
| const __m256 vminus_ln2_o8_hi = _mm256_set1_ps(-0x1.62E43p-4f); |
| const __m256 vminus_ln2_o8_lo = _mm256_set1_ps(0x1.05C61p-32f); |
| const __m256 vplus_inf = _mm256_set1_ps(INFINITY); |
| |
| const __m256 vc2 = _mm256_set1_ps(0x1.000000p-1f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555C82p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.5558A8p-5f); |
| |
| const __m256 vtable = _mm256_set_ps( |
| 0x1.D5818Ep+0f, 0x1.AE89FAp+0f, 0x1.8ACE54p+0f, 0x1.6A09E6p+0f, |
| 0x1.4BFDAEp+0f, 0x1.306FE0p+0f, 0x1.172B84p+0f, 0x1.000000p+0f); |
| |
| const __m256i vmin_exponent = _mm256_set1_epi32(0xC1000000); |
| const __m256i vmax_exponent = _mm256_set1_epi32(0x3F800000); |
| const __m256i vdefault_exponent = vmax_exponent; |
| const __m256i vmantissa_mask = _mm256_set1_epi32(0x007FFFF8); |
| |
| for (; n != 0; n -= 8 * sizeof(float)) { |
| const __m256 vx = _mm256_loadu_ps(input); |
| |
| // Compute reduced argument n := round(x * 8 / log(2)). |
| // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the |
| // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. |
| // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because |
| // inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such |
| // inputs at the very end of the algorithm. |
| __m256 vn = _mm256_fmadd_ps(vx, vlog2e_x8, vmagic_bias); |
| |
| // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n |
| // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly. |
| // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126] |
| // range, which is insufficient to cover [-150, 128] range of n. |
| // - When n is within [-127, 126], sn == 2**n and so == 1.0. |
| // - When n < -127, sn == 2**(-127) and so == 2**(n + 127). |
| // - When n > 126, sn == 2**126 and so == 2**(n - 126). |
| __m256i veo = _mm256_slli_epi32(_mm256_and_si256(_mm256_castps_si256(vn), vmantissa_mask), 20); |
| __m256i ven = _mm256_max_epi32(veo, vmin_exponent); |
| ven = _mm256_min_epi32(ven, vmax_exponent); |
| veo = _mm256_sub_epi32(veo, ven); |
| const __m256 vsn = _mm256_castsi256_ps(_mm256_add_epi32(ven, vdefault_exponent)); |
| const __m256 vso = _mm256_castsi256_ps(_mm256_add_epi32(veo, vdefault_exponent)); |
| |
| // Use the low 3 bits of n (as integer) for table lookup. |
| __m256 vl = _mm256_permutevar8x32_ps(vtable, _mm256_castps_si256(vn)); |
| |
| // Subtract the large number back to get final n := round(x * 8 / log(2)). |
| vn = _mm256_sub_ps(vn, vmagic_bias); |
| |
| // Compute reduced argument t := x - n * log(2) / 8. |
| // Use Cody-Waite range reduction method (note two constants to represent log(2) / 8) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_o8_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_o8_lo, vt); |
| |
| // Compute degree-3 polynomial approxiatmion for exp(t) on [-log(2)/16, log(2)/16]. |
| __m256 vp = _mm256_fmadd_ps(vt, vc4, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| |
| // Reconstruct the final f value: |
| // f = so * sn * l * (1 + t * (1 + t * (c2 + t * (c3 + t * c4)))) |
| // = so * sn * (l + l * (t + t * (t * (c2 + t * (c3 + t * c4))))) |
| // = so * sn * (l + l * p) |
| vl = _mm256_mul_ps(vl, vso); |
| vp = _mm256_mul_ps(vp, vt); |
| vp = _mm256_fmadd_ps(vt, vp, vt); |
| __m256 vf = _mm256_fmadd_ps(vl, vp, vl); |
| vf = _mm256_mul_ps(vf, vsn); |
| |
| // For inputs below zero cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf); |
| // For inputs above inf cutoff, replace output with +inf. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS)); |
| _mm256_storeu_ps(output, vf); |
| |
| input += 8; |
| output += 8; |
| } |
| } |