| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stddef.h> |
| |
| #include <nmmintrin.h> |
| |
| #include <xnnpack/requantization-stubs.h> |
| |
| |
| void xnn_qs8_requantize_fp32__sse4( |
| size_t n, |
| const int32_t* input, |
| float scale, |
| int8_t zero_point, |
| int8_t qmin, |
| int8_t qmax, |
| int8_t* output) |
| { |
| assert(n % 16 == 0); |
| assert(scale < 1.0f); |
| assert(scale >= 0x1.0p-32f); |
| |
| const __m128 vscale = _mm_set1_ps(scale); |
| const __m128i vzero_point = _mm_set1_epi16((short) zero_point); |
| const __m128i vqmin = _mm_set1_epi8((char) qmin); |
| const __m128i vqmax = _mm_set1_epi8((char) qmax); |
| for (; n != 0; n -= 16) { |
| const __m128i x = _mm_loadu_si128((const __m128i*) input); |
| const __m128i y = _mm_loadu_si128((const __m128i*) (input + 4)); |
| const __m128i z = _mm_loadu_si128((const __m128i*) (input + 8)); |
| const __m128i w = _mm_loadu_si128((const __m128i*) (input + 12)); |
| input += 16; |
| |
| // Convert int32_t input to FP32 and multiply by FP32 scale. |
| // Both operations involve statistically unbiased roundings (with default MXCSR rounding mode): |
| // - Large int32_t values can't be exactly represented as FP32. CVTDQ2PS instruction on x86 would round it |
| // according to nearest FP32 value with ties to even (assuming default MXCSR rounding mode). |
| // - Product of two FP32 values is generally not exactly representation as an FP32 value, and will be rounded |
| // to nearest FP32 value with ties to even with default MXCSR rounding mode. |
| const __m128 x_scaled = _mm_mul_ps(_mm_cvtepi32_ps(x), vscale); |
| const __m128 y_scaled = _mm_mul_ps(_mm_cvtepi32_ps(y), vscale); |
| const __m128 z_scaled = _mm_mul_ps(_mm_cvtepi32_ps(z), vscale); |
| const __m128 w_scaled = _mm_mul_ps(_mm_cvtepi32_ps(w), vscale); |
| |
| // Convert scaled FP32 result to int32_t using CVTPS2DQ instruction from x86 SSE2. CVTPS2DQ instruction rounds |
| // result according to nearest FP32 value with ties to even (assuming default MXCSR rounding mode). |
| // However, when conversion overflows, it produces INT32_MIN as a result. For large positive inputs the result |
| // of conversion can become negative, which affects the final requantization result. Note that on x86 SSE2 we |
| // have e.g. int32_t(float(INT32_MAX)) == INT32_MIN! This happens because float(INT32_MAX) rounds to 2**31, |
| // which overflows int32_t when it is converted back to integer. |
| // |
| // Thankfully, we can prove that overflow never happens in this requantization scheme. The largest positive |
| // input is INT32_MAX (2**31 - 1), which turns into 2**31 when converted to float. The largest scale value |
| // is 0x1.FFFFFEp-1. When multiplied together, the result is 2147483520 (compare to INT32_MAX = 2147483647), |
| // which fits into int32_t without overflow. |
| const __m128i x_rounded = _mm_cvtps_epi32(x_scaled); |
| const __m128i y_rounded = _mm_cvtps_epi32(y_scaled); |
| const __m128i z_rounded = _mm_cvtps_epi32(z_scaled); |
| const __m128i w_rounded = _mm_cvtps_epi32(w_scaled); |
| |
| // Standard final sequence on x86 SSE2: |
| // - Pack to int16_t and saturate |
| // - Add zero point |
| // - Pack to int8_t and saturate |
| // - Clamp between qmin and qmax |
| const __m128i xy_packed = _mm_adds_epi16(_mm_packs_epi32(x_rounded, y_rounded), vzero_point); |
| const __m128i zw_packed = _mm_adds_epi16(_mm_packs_epi32(z_rounded, w_rounded), vzero_point); |
| const __m128i xyzw_packed = _mm_packs_epi16(xy_packed, zw_packed); |
| const __m128i xyzw_clamped = _mm_max_epi8(_mm_min_epi8(xyzw_packed, vqmax), vqmin); |
| |
| // 4x CVTDQ2PS |
| // 4x MULPS |
| // 4x CVTPS2DQ |
| // 2x PACKSSDW |
| // 2x PADDSW |
| // 1x PACKSSWB |
| // 1x PMAXSB |
| // 1x PMINSB |
| // --------------------- |
| // 19 instructions total |
| |
| _mm_storeu_si128((__m128i*) output, xyzw_clamped); |
| output += 16; |
| } |
| } |