| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| |
| static void xnnpack_sigmoid_q8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t channels = state.range(1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng); |
| |
| std::vector<uint8_t> input(batch_size * channels); |
| std::vector<uint8_t> output(batch_size * channels); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sigmoid_op = nullptr; |
| status = xnn_create_sigmoid_nc_q8( |
| channels, channels /* input stride */, channels /* output stride */, |
| 127 /* input zero point */, 1.0f /* input scale */, |
| 0 /* output zero point */, 1.0f / 256.0f /* output scale */, |
| 0 /* output min */, 255 /* output max */, |
| 0 /* flags */, &sigmoid_op); |
| if (status != xnn_status_success || sigmoid_op == nullptr) { |
| state.SkipWithError("failed to create Sigmoid operator"); |
| return; |
| } |
| |
| status = xnn_setup_sigmoid_nc_q8( |
| sigmoid_op, |
| batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Sigmoid operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Sigmoid operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sigmoid_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Sigmoid operator"); |
| return; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| static void xnnpack_sigmoid_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t channels = state.range(1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), rng); |
| |
| std::vector<float> input(batch_size * channels); |
| std::vector<float> output(batch_size * channels); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sigmoid_op = nullptr; |
| status = xnn_create_sigmoid_nc_f32( |
| channels, channels /* input stride */, channels /* output stride */, |
| 0 /* flags */, &sigmoid_op); |
| if (status != xnn_status_success || sigmoid_op == nullptr) { |
| state.SkipWithError("failed to create Sigmoid operator"); |
| return; |
| } |
| |
| status = xnn_setup_sigmoid_nc_f32( |
| sigmoid_op, |
| batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Sigmoid operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Sigmoid operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sigmoid_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Sigmoid operator"); |
| return; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| static void tflite_sigmoid_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t channels = state.range(1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), rng); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_LOGISTIC); |
| |
| flatbuffers::Offset<tflite::Buffer> buffers[1] = { |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }; |
| |
| const int32_t input_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(1 /* height */), |
| static_cast<int32_t>(1 /* width */), |
| static_cast<int32_t>(channels) |
| }; |
| const int32_t output_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(1 /* height */), |
| static_cast<int32_t>(1 /* width */), |
| static_cast<int32_t>(channels) |
| }; |
| |
| flatbuffers::Offset<tflite::Tensor> tensors[2] = { |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(input_shape, 4), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(output_shape, 4), |
| tflite::TensorType_FLOAT32), |
| }; |
| |
| const int32_t op_inputs[1] = { 0 }; |
| const int32_t op_outputs[1] = { 1 }; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs, 1), |
| builder.CreateVector<int32_t>(op_outputs, 1)); |
| |
| const int32_t graph_inputs[1] = { 0 }; |
| const int32_t graph_outputs[1] = { 1 }; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors, 2), |
| builder.CreateVector<int32_t>(graph_inputs, 1), |
| builder.CreateVector<int32_t>(graph_outputs, 1), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Sigmoid model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers, 1)); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolver resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| if (interpreter == nullptr) { |
| state.SkipWithError("TFLite interpreter is null"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size * channels, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| static void CharacteristicArguments(benchmark::internal::Benchmark* b) |
| { |
| b->ArgNames({"N", "C"}); |
| |
| int32_t c = 16; |
| for (int32_t n = 224; n >= 7; n /= 2) { |
| b->Args({n * n, c}); |
| c *= 2; |
| } |
| } |
| |
| BENCHMARK(xnnpack_sigmoid_q8)->Apply(CharacteristicArguments)->UseRealTime(); |
| BENCHMARK(xnnpack_sigmoid_f32)->Apply(CharacteristicArguments)->UseRealTime(); |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK(tflite_sigmoid_f32)->Apply(CharacteristicArguments)->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |