| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <xnnpack.h> |
| |
| #include <array> |
| #include <algorithm> |
| #include <functional> |
| #include <iostream> |
| #include <limits> |
| #include <random> |
| |
| #include "models/models.h" |
| |
| namespace models { |
| |
| ExecutionPlan FP32MobileNetV2(pthreadpool_t threadpool) { |
| alignas(16) static std::array<float, 150528> v0; |
| alignas(16) static std::array<float, 401408> v1; |
| alignas(16) static std::array<float, 401408> v2; |
| alignas(16) static std::array<float, 200704> v3; |
| alignas(16) static std::array<float, 1204224> v4; |
| alignas(16) static std::array<float, 301056> v5; |
| alignas(16) static std::array<float, 75264> v6; |
| alignas(16) static std::array<float, 451584> v7; |
| alignas(16) static std::array<float, 451584> v8; |
| alignas(16) static std::array<float, 75264> v9; |
| alignas(16) static std::array<float, 75264> v10; |
| alignas(16) static std::array<float, 451584> v11; |
| alignas(16) static std::array<float, 112896> v12; |
| alignas(16) static std::array<float, 25088> v13; |
| alignas(16) static std::array<float, 150528> v14; |
| alignas(16) static std::array<float, 150528> v15; |
| alignas(16) static std::array<float, 25088> v16; |
| alignas(16) static std::array<float, 25088> v17; |
| alignas(16) static std::array<float, 150528> v18; |
| alignas(16) static std::array<float, 150528> v19; |
| alignas(16) static std::array<float, 25088> v20; |
| alignas(16) static std::array<float, 25088> v21; |
| alignas(16) static std::array<float, 150528> v22; |
| alignas(16) static std::array<float, 37632> v23; |
| alignas(16) static std::array<float, 12544> v24; |
| alignas(16) static std::array<float, 75264> v25; |
| alignas(16) static std::array<float, 75264> v26; |
| alignas(16) static std::array<float, 12544> v27; |
| alignas(16) static std::array<float, 12544> v28; |
| alignas(16) static std::array<float, 75264> v29; |
| alignas(16) static std::array<float, 75264> v30; |
| alignas(16) static std::array<float, 12544> v31; |
| alignas(16) static std::array<float, 12544> v32; |
| alignas(16) static std::array<float, 75264> v33; |
| alignas(16) static std::array<float, 75264> v34; |
| alignas(16) static std::array<float, 12544> v35; |
| alignas(16) static std::array<float, 12544> v36; |
| alignas(16) static std::array<float, 75264> v37; |
| alignas(16) static std::array<float, 75264> v38; |
| alignas(16) static std::array<float, 18816> v39; |
| alignas(16) static std::array<float, 112896> v40; |
| alignas(16) static std::array<float, 112896> v41; |
| alignas(16) static std::array<float, 18816> v42; |
| alignas(16) static std::array<float, 18816> v43; |
| alignas(16) static std::array<float, 112896> v44; |
| alignas(16) static std::array<float, 112896> v45; |
| alignas(16) static std::array<float, 18816> v46; |
| alignas(16) static std::array<float, 18816> v47; |
| alignas(16) static std::array<float, 112896> v48; |
| alignas(16) static std::array<float, 28224> v49; |
| alignas(16) static std::array<float, 7840> v50; |
| alignas(16) static std::array<float, 47040> v51; |
| alignas(16) static std::array<float, 47040> v52; |
| alignas(16) static std::array<float, 7840> v53; |
| alignas(16) static std::array<float, 7840> v54; |
| alignas(16) static std::array<float, 47040> v55; |
| alignas(16) static std::array<float, 47040> v56; |
| alignas(16) static std::array<float, 7840> v57; |
| alignas(16) static std::array<float, 7840> v58; |
| alignas(16) static std::array<float, 47040> v59; |
| alignas(16) static std::array<float, 47040> v60; |
| alignas(16) static std::array<float, 15680> v61; |
| alignas(16) static std::array<float, 62720> v62; |
| alignas(16) static std::array<float, 1280> v63; |
| alignas(16) static std::array<float, 1001> v64; |
| alignas(16) static std::array<float, 864> w65; |
| alignas(16) static std::array<float, 32> w66; |
| alignas(16) static std::array<float, 288> w67; |
| alignas(16) static std::array<float, 32> w68; |
| alignas(16) static std::array<float, 512> w69; |
| alignas(16) static std::array<float, 16> w70; |
| alignas(16) static std::array<float, 1536> w71; |
| alignas(16) static std::array<float, 96> w72; |
| alignas(16) static std::array<float, 864> w73; |
| alignas(16) static std::array<float, 96> w74; |
| alignas(16) static std::array<float, 2304> w75; |
| alignas(16) static std::array<float, 24> w76; |
| alignas(16) static std::array<float, 3456> w77; |
| alignas(16) static std::array<float, 144> w78; |
| alignas(16) static std::array<float, 1296> w79; |
| alignas(16) static std::array<float, 144> w80; |
| alignas(16) static std::array<float, 3456> w81; |
| alignas(16) static std::array<float, 24> w82; |
| alignas(16) static std::array<float, 3456> w83; |
| alignas(16) static std::array<float, 144> w84; |
| alignas(16) static std::array<float, 1296> w85; |
| alignas(16) static std::array<float, 144> w86; |
| alignas(16) static std::array<float, 4608> w87; |
| alignas(16) static std::array<float, 32> w88; |
| alignas(16) static std::array<float, 6144> w89; |
| alignas(16) static std::array<float, 192> w90; |
| alignas(16) static std::array<float, 1728> w91; |
| alignas(16) static std::array<float, 192> w92; |
| alignas(16) static std::array<float, 6144> w93; |
| alignas(16) static std::array<float, 32> w94; |
| alignas(16) static std::array<float, 6144> w95; |
| alignas(16) static std::array<float, 192> w96; |
| alignas(16) static std::array<float, 1728> w97; |
| alignas(16) static std::array<float, 192> w98; |
| alignas(16) static std::array<float, 6144> w99; |
| alignas(16) static std::array<float, 32> w100; |
| alignas(16) static std::array<float, 6144> w101; |
| alignas(16) static std::array<float, 192> w102; |
| alignas(16) static std::array<float, 1728> w103; |
| alignas(16) static std::array<float, 192> w104; |
| alignas(16) static std::array<float, 12288> w105; |
| alignas(16) static std::array<float, 64> w106; |
| alignas(16) static std::array<float, 24576> w107; |
| alignas(16) static std::array<float, 384> w108; |
| alignas(16) static std::array<float, 3456> w109; |
| alignas(16) static std::array<float, 384> w110; |
| alignas(16) static std::array<float, 24576> w111; |
| alignas(16) static std::array<float, 64> w112; |
| alignas(16) static std::array<float, 24576> w113; |
| alignas(16) static std::array<float, 384> w114; |
| alignas(16) static std::array<float, 3456> w115; |
| alignas(16) static std::array<float, 384> w116; |
| alignas(16) static std::array<float, 24576> w117; |
| alignas(16) static std::array<float, 64> w118; |
| alignas(16) static std::array<float, 24576> w119; |
| alignas(16) static std::array<float, 384> w120; |
| alignas(16) static std::array<float, 3456> w121; |
| alignas(16) static std::array<float, 384> w122; |
| alignas(16) static std::array<float, 24576> w123; |
| alignas(16) static std::array<float, 64> w124; |
| alignas(16) static std::array<float, 24576> w125; |
| alignas(16) static std::array<float, 384> w126; |
| alignas(16) static std::array<float, 3456> w127; |
| alignas(16) static std::array<float, 384> w128; |
| alignas(16) static std::array<float, 36864> w129; |
| alignas(16) static std::array<float, 96> w130; |
| alignas(16) static std::array<float, 55296> w131; |
| alignas(16) static std::array<float, 576> w132; |
| alignas(16) static std::array<float, 5184> w133; |
| alignas(16) static std::array<float, 576> w134; |
| alignas(16) static std::array<float, 55296> w135; |
| alignas(16) static std::array<float, 96> w136; |
| alignas(16) static std::array<float, 55296> w137; |
| alignas(16) static std::array<float, 576> w138; |
| alignas(16) static std::array<float, 5184> w139; |
| alignas(16) static std::array<float, 576> w140; |
| alignas(16) static std::array<float, 55296> w141; |
| alignas(16) static std::array<float, 96> w142; |
| alignas(16) static std::array<float, 55296> w143; |
| alignas(16) static std::array<float, 576> w144; |
| alignas(16) static std::array<float, 5184> w145; |
| alignas(16) static std::array<float, 576> w146; |
| alignas(16) static std::array<float, 92160> w147; |
| alignas(16) static std::array<float, 160> w148; |
| alignas(16) static std::array<float, 153600> w149; |
| alignas(16) static std::array<float, 960> w150; |
| alignas(16) static std::array<float, 8640> w151; |
| alignas(16) static std::array<float, 960> w152; |
| alignas(16) static std::array<float, 153600> w153; |
| alignas(16) static std::array<float, 160> w154; |
| alignas(16) static std::array<float, 153600> w155; |
| alignas(16) static std::array<float, 960> w156; |
| alignas(16) static std::array<float, 8640> w157; |
| alignas(16) static std::array<float, 960> w158; |
| alignas(16) static std::array<float, 153600> w159; |
| alignas(16) static std::array<float, 160> w160; |
| alignas(16) static std::array<float, 153600> w161; |
| alignas(16) static std::array<float, 960> w162; |
| alignas(16) static std::array<float, 8640> w163; |
| alignas(16) static std::array<float, 960> w164; |
| alignas(16) static std::array<float, 307200> w165; |
| alignas(16) static std::array<float, 320> w166; |
| alignas(16) static std::array<float, 409600> w167; |
| alignas(16) static std::array<float, 1280> w168; |
| alignas(16) static std::array<float, 1281280> w169; |
| alignas(16) static std::array<float, 1001> w170; |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng)); |
| std::generate(v0.begin(), v0.end(), std::ref(f32rng)); |
| std::generate(v1.begin(), v1.end(), std::ref(f32rng)); |
| std::generate(v2.begin(), v2.end(), std::ref(f32rng)); |
| std::generate(v3.begin(), v3.end(), std::ref(f32rng)); |
| std::generate(v4.begin(), v4.end(), std::ref(f32rng)); |
| std::generate(v5.begin(), v5.end(), std::ref(f32rng)); |
| std::generate(v6.begin(), v6.end(), std::ref(f32rng)); |
| std::generate(v7.begin(), v7.end(), std::ref(f32rng)); |
| std::generate(v8.begin(), v8.end(), std::ref(f32rng)); |
| std::generate(v9.begin(), v9.end(), std::ref(f32rng)); |
| std::generate(v10.begin(), v10.end(), std::ref(f32rng)); |
| std::generate(v11.begin(), v11.end(), std::ref(f32rng)); |
| std::generate(v12.begin(), v12.end(), std::ref(f32rng)); |
| std::generate(v13.begin(), v13.end(), std::ref(f32rng)); |
| std::generate(v14.begin(), v14.end(), std::ref(f32rng)); |
| std::generate(v15.begin(), v15.end(), std::ref(f32rng)); |
| std::generate(v16.begin(), v16.end(), std::ref(f32rng)); |
| std::generate(v17.begin(), v17.end(), std::ref(f32rng)); |
| std::generate(v18.begin(), v18.end(), std::ref(f32rng)); |
| std::generate(v19.begin(), v19.end(), std::ref(f32rng)); |
| std::generate(v20.begin(), v20.end(), std::ref(f32rng)); |
| std::generate(v21.begin(), v21.end(), std::ref(f32rng)); |
| std::generate(v22.begin(), v22.end(), std::ref(f32rng)); |
| std::generate(v23.begin(), v23.end(), std::ref(f32rng)); |
| std::generate(v24.begin(), v24.end(), std::ref(f32rng)); |
| std::generate(v25.begin(), v25.end(), std::ref(f32rng)); |
| std::generate(v26.begin(), v26.end(), std::ref(f32rng)); |
| std::generate(v27.begin(), v27.end(), std::ref(f32rng)); |
| std::generate(v28.begin(), v28.end(), std::ref(f32rng)); |
| std::generate(v29.begin(), v29.end(), std::ref(f32rng)); |
| std::generate(v30.begin(), v30.end(), std::ref(f32rng)); |
| std::generate(v31.begin(), v31.end(), std::ref(f32rng)); |
| std::generate(v32.begin(), v32.end(), std::ref(f32rng)); |
| std::generate(v33.begin(), v33.end(), std::ref(f32rng)); |
| std::generate(v34.begin(), v34.end(), std::ref(f32rng)); |
| std::generate(v35.begin(), v35.end(), std::ref(f32rng)); |
| std::generate(v36.begin(), v36.end(), std::ref(f32rng)); |
| std::generate(v37.begin(), v37.end(), std::ref(f32rng)); |
| std::generate(v38.begin(), v38.end(), std::ref(f32rng)); |
| std::generate(v39.begin(), v39.end(), std::ref(f32rng)); |
| std::generate(v40.begin(), v40.end(), std::ref(f32rng)); |
| std::generate(v41.begin(), v41.end(), std::ref(f32rng)); |
| std::generate(v42.begin(), v42.end(), std::ref(f32rng)); |
| std::generate(v43.begin(), v43.end(), std::ref(f32rng)); |
| std::generate(v44.begin(), v44.end(), std::ref(f32rng)); |
| std::generate(v45.begin(), v45.end(), std::ref(f32rng)); |
| std::generate(v46.begin(), v46.end(), std::ref(f32rng)); |
| std::generate(v47.begin(), v47.end(), std::ref(f32rng)); |
| std::generate(v48.begin(), v48.end(), std::ref(f32rng)); |
| std::generate(v49.begin(), v49.end(), std::ref(f32rng)); |
| std::generate(v50.begin(), v50.end(), std::ref(f32rng)); |
| std::generate(v51.begin(), v51.end(), std::ref(f32rng)); |
| std::generate(v52.begin(), v52.end(), std::ref(f32rng)); |
| std::generate(v53.begin(), v53.end(), std::ref(f32rng)); |
| std::generate(v54.begin(), v54.end(), std::ref(f32rng)); |
| std::generate(v55.begin(), v55.end(), std::ref(f32rng)); |
| std::generate(v56.begin(), v56.end(), std::ref(f32rng)); |
| std::generate(v57.begin(), v57.end(), std::ref(f32rng)); |
| std::generate(v58.begin(), v58.end(), std::ref(f32rng)); |
| std::generate(v59.begin(), v59.end(), std::ref(f32rng)); |
| std::generate(v60.begin(), v60.end(), std::ref(f32rng)); |
| std::generate(v61.begin(), v61.end(), std::ref(f32rng)); |
| std::generate(v62.begin(), v62.end(), std::ref(f32rng)); |
| std::generate(v63.begin(), v63.end(), std::ref(f32rng)); |
| std::generate(v64.begin(), v64.end(), std::ref(f32rng)); |
| std::generate(w65.begin(), w65.end(), std::ref(f32rng)); |
| std::generate(w66.begin(), w66.end(), std::ref(f32rng)); |
| std::generate(w67.begin(), w67.end(), std::ref(f32rng)); |
| std::generate(w68.begin(), w68.end(), std::ref(f32rng)); |
| std::generate(w69.begin(), w69.end(), std::ref(f32rng)); |
| std::generate(w70.begin(), w70.end(), std::ref(f32rng)); |
| std::generate(w71.begin(), w71.end(), std::ref(f32rng)); |
| std::generate(w72.begin(), w72.end(), std::ref(f32rng)); |
| std::generate(w73.begin(), w73.end(), std::ref(f32rng)); |
| std::generate(w74.begin(), w74.end(), std::ref(f32rng)); |
| std::generate(w75.begin(), w75.end(), std::ref(f32rng)); |
| std::generate(w76.begin(), w76.end(), std::ref(f32rng)); |
| std::generate(w77.begin(), w77.end(), std::ref(f32rng)); |
| std::generate(w78.begin(), w78.end(), std::ref(f32rng)); |
| std::generate(w79.begin(), w79.end(), std::ref(f32rng)); |
| std::generate(w80.begin(), w80.end(), std::ref(f32rng)); |
| std::generate(w81.begin(), w81.end(), std::ref(f32rng)); |
| std::generate(w82.begin(), w82.end(), std::ref(f32rng)); |
| std::generate(w83.begin(), w83.end(), std::ref(f32rng)); |
| std::generate(w84.begin(), w84.end(), std::ref(f32rng)); |
| std::generate(w85.begin(), w85.end(), std::ref(f32rng)); |
| std::generate(w86.begin(), w86.end(), std::ref(f32rng)); |
| std::generate(w87.begin(), w87.end(), std::ref(f32rng)); |
| std::generate(w88.begin(), w88.end(), std::ref(f32rng)); |
| std::generate(w89.begin(), w89.end(), std::ref(f32rng)); |
| std::generate(w90.begin(), w90.end(), std::ref(f32rng)); |
| std::generate(w91.begin(), w91.end(), std::ref(f32rng)); |
| std::generate(w92.begin(), w92.end(), std::ref(f32rng)); |
| std::generate(w93.begin(), w93.end(), std::ref(f32rng)); |
| std::generate(w94.begin(), w94.end(), std::ref(f32rng)); |
| std::generate(w95.begin(), w95.end(), std::ref(f32rng)); |
| std::generate(w96.begin(), w96.end(), std::ref(f32rng)); |
| std::generate(w97.begin(), w97.end(), std::ref(f32rng)); |
| std::generate(w98.begin(), w98.end(), std::ref(f32rng)); |
| std::generate(w99.begin(), w99.end(), std::ref(f32rng)); |
| std::generate(w100.begin(), w100.end(), std::ref(f32rng)); |
| std::generate(w101.begin(), w101.end(), std::ref(f32rng)); |
| std::generate(w102.begin(), w102.end(), std::ref(f32rng)); |
| std::generate(w103.begin(), w103.end(), std::ref(f32rng)); |
| std::generate(w104.begin(), w104.end(), std::ref(f32rng)); |
| std::generate(w105.begin(), w105.end(), std::ref(f32rng)); |
| std::generate(w106.begin(), w106.end(), std::ref(f32rng)); |
| std::generate(w107.begin(), w107.end(), std::ref(f32rng)); |
| std::generate(w108.begin(), w108.end(), std::ref(f32rng)); |
| std::generate(w109.begin(), w109.end(), std::ref(f32rng)); |
| std::generate(w110.begin(), w110.end(), std::ref(f32rng)); |
| std::generate(w111.begin(), w111.end(), std::ref(f32rng)); |
| std::generate(w112.begin(), w112.end(), std::ref(f32rng)); |
| std::generate(w113.begin(), w113.end(), std::ref(f32rng)); |
| std::generate(w114.begin(), w114.end(), std::ref(f32rng)); |
| std::generate(w115.begin(), w115.end(), std::ref(f32rng)); |
| std::generate(w116.begin(), w116.end(), std::ref(f32rng)); |
| std::generate(w117.begin(), w117.end(), std::ref(f32rng)); |
| std::generate(w118.begin(), w118.end(), std::ref(f32rng)); |
| std::generate(w119.begin(), w119.end(), std::ref(f32rng)); |
| std::generate(w120.begin(), w120.end(), std::ref(f32rng)); |
| std::generate(w121.begin(), w121.end(), std::ref(f32rng)); |
| std::generate(w122.begin(), w122.end(), std::ref(f32rng)); |
| std::generate(w123.begin(), w123.end(), std::ref(f32rng)); |
| std::generate(w124.begin(), w124.end(), std::ref(f32rng)); |
| std::generate(w125.begin(), w125.end(), std::ref(f32rng)); |
| std::generate(w126.begin(), w126.end(), std::ref(f32rng)); |
| std::generate(w127.begin(), w127.end(), std::ref(f32rng)); |
| std::generate(w128.begin(), w128.end(), std::ref(f32rng)); |
| std::generate(w129.begin(), w129.end(), std::ref(f32rng)); |
| std::generate(w130.begin(), w130.end(), std::ref(f32rng)); |
| std::generate(w131.begin(), w131.end(), std::ref(f32rng)); |
| std::generate(w132.begin(), w132.end(), std::ref(f32rng)); |
| std::generate(w133.begin(), w133.end(), std::ref(f32rng)); |
| std::generate(w134.begin(), w134.end(), std::ref(f32rng)); |
| std::generate(w135.begin(), w135.end(), std::ref(f32rng)); |
| std::generate(w136.begin(), w136.end(), std::ref(f32rng)); |
| std::generate(w137.begin(), w137.end(), std::ref(f32rng)); |
| std::generate(w138.begin(), w138.end(), std::ref(f32rng)); |
| std::generate(w139.begin(), w139.end(), std::ref(f32rng)); |
| std::generate(w140.begin(), w140.end(), std::ref(f32rng)); |
| std::generate(w141.begin(), w141.end(), std::ref(f32rng)); |
| std::generate(w142.begin(), w142.end(), std::ref(f32rng)); |
| std::generate(w143.begin(), w143.end(), std::ref(f32rng)); |
| std::generate(w144.begin(), w144.end(), std::ref(f32rng)); |
| std::generate(w145.begin(), w145.end(), std::ref(f32rng)); |
| std::generate(w146.begin(), w146.end(), std::ref(f32rng)); |
| std::generate(w147.begin(), w147.end(), std::ref(f32rng)); |
| std::generate(w148.begin(), w148.end(), std::ref(f32rng)); |
| std::generate(w149.begin(), w149.end(), std::ref(f32rng)); |
| std::generate(w150.begin(), w150.end(), std::ref(f32rng)); |
| std::generate(w151.begin(), w151.end(), std::ref(f32rng)); |
| std::generate(w152.begin(), w152.end(), std::ref(f32rng)); |
| std::generate(w153.begin(), w153.end(), std::ref(f32rng)); |
| std::generate(w154.begin(), w154.end(), std::ref(f32rng)); |
| std::generate(w155.begin(), w155.end(), std::ref(f32rng)); |
| std::generate(w156.begin(), w156.end(), std::ref(f32rng)); |
| std::generate(w157.begin(), w157.end(), std::ref(f32rng)); |
| std::generate(w158.begin(), w158.end(), std::ref(f32rng)); |
| std::generate(w159.begin(), w159.end(), std::ref(f32rng)); |
| std::generate(w160.begin(), w160.end(), std::ref(f32rng)); |
| std::generate(w161.begin(), w161.end(), std::ref(f32rng)); |
| std::generate(w162.begin(), w162.end(), std::ref(f32rng)); |
| std::generate(w163.begin(), w163.end(), std::ref(f32rng)); |
| std::generate(w164.begin(), w164.end(), std::ref(f32rng)); |
| std::generate(w165.begin(), w165.end(), std::ref(f32rng)); |
| std::generate(w166.begin(), w166.end(), std::ref(f32rng)); |
| std::generate(w167.begin(), w167.end(), std::ref(f32rng)); |
| std::generate(w168.begin(), w168.end(), std::ref(f32rng)); |
| std::generate(w169.begin(), w169.end(), std::ref(f32rng)); |
| std::generate(w170.begin(), w170.end(), std::ref(f32rng)); |
| |
| ExecutionPlan operators; |
| xnn_status status; |
| |
| xnn_operator_t op0 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 0 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 3 /* input channels per group */, |
| 32 /* output_channels_per_group */, |
| 3 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w65.data(), w66.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op0); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #0" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op0, xnn_delete_operator); |
| |
| xnn_operator_t op1 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 32 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w67.data(), w68.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op1); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #1" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op1, xnn_delete_operator); |
| |
| xnn_operator_t op2 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 32 /* input channels per group */, |
| 16 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 16 /* output pixel stride */, |
| w69.data(), w70.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op2); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #2" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op2, xnn_delete_operator); |
| |
| xnn_operator_t op3 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 16 /* input channels per group */, |
| 96 /* output_channels_per_group */, |
| 16 /* input pixel stride */, |
| 96 /* output pixel stride */, |
| w71.data(), w72.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op3); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #3" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op3, xnn_delete_operator); |
| |
| xnn_operator_t op4 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 0 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 96 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 96 /* input pixel stride */, |
| 96 /* output pixel stride */, |
| w73.data(), w74.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op4); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #4" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op4, xnn_delete_operator); |
| |
| xnn_operator_t op5 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 96 /* input channels per group */, |
| 24 /* output_channels_per_group */, |
| 96 /* input pixel stride */, |
| 24 /* output pixel stride */, |
| w75.data(), w76.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op5); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #5" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op5, xnn_delete_operator); |
| |
| xnn_operator_t op6 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 24 /* input channels per group */, |
| 144 /* output_channels_per_group */, |
| 24 /* input pixel stride */, |
| 144 /* output pixel stride */, |
| w77.data(), w78.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op6); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #6" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op6, xnn_delete_operator); |
| |
| xnn_operator_t op7 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 144 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 144 /* input pixel stride */, |
| 144 /* output pixel stride */, |
| w79.data(), w80.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op7); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #7" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op7, xnn_delete_operator); |
| |
| xnn_operator_t op8 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 144 /* input channels per group */, |
| 24 /* output_channels_per_group */, |
| 144 /* input pixel stride */, |
| 24 /* output pixel stride */, |
| w81.data(), w82.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op8); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #8" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op8, xnn_delete_operator); |
| |
| xnn_operator_t op9 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op9); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #9" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op9, xnn_delete_operator); |
| |
| xnn_operator_t op10 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 24 /* input channels per group */, |
| 144 /* output_channels_per_group */, |
| 24 /* input pixel stride */, |
| 144 /* output pixel stride */, |
| w83.data(), w84.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op10); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #10" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op10, xnn_delete_operator); |
| |
| xnn_operator_t op11 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 0 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 144 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 144 /* input pixel stride */, |
| 144 /* output pixel stride */, |
| w85.data(), w86.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op11); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #11" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op11, xnn_delete_operator); |
| |
| xnn_operator_t op12 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 144 /* input channels per group */, |
| 32 /* output_channels_per_group */, |
| 144 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w87.data(), w88.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op12); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #12" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op12, xnn_delete_operator); |
| |
| xnn_operator_t op13 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 32 /* input channels per group */, |
| 192 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 192 /* output pixel stride */, |
| w89.data(), w90.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op13); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #13" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op13, xnn_delete_operator); |
| |
| xnn_operator_t op14 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 192 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 192 /* input pixel stride */, |
| 192 /* output pixel stride */, |
| w91.data(), w92.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op14); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #14" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op14, xnn_delete_operator); |
| |
| xnn_operator_t op15 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 192 /* input channels per group */, |
| 32 /* output_channels_per_group */, |
| 192 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w93.data(), w94.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op15); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #15" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op15, xnn_delete_operator); |
| |
| xnn_operator_t op16 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op16); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #16" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op16, xnn_delete_operator); |
| |
| xnn_operator_t op17 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 32 /* input channels per group */, |
| 192 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 192 /* output pixel stride */, |
| w95.data(), w96.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op17); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #17" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op17, xnn_delete_operator); |
| |
| xnn_operator_t op18 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 192 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 192 /* input pixel stride */, |
| 192 /* output pixel stride */, |
| w97.data(), w98.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op18); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #18" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op18, xnn_delete_operator); |
| |
| xnn_operator_t op19 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 192 /* input channels per group */, |
| 32 /* output_channels_per_group */, |
| 192 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w99.data(), w100.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op19); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #19" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op19, xnn_delete_operator); |
| |
| xnn_operator_t op20 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op20); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #20" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op20, xnn_delete_operator); |
| |
| xnn_operator_t op21 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 32 /* input channels per group */, |
| 192 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 192 /* output pixel stride */, |
| w101.data(), w102.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op21); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #21" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op21, xnn_delete_operator); |
| |
| xnn_operator_t op22 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 0 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 192 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 192 /* input pixel stride */, |
| 192 /* output pixel stride */, |
| w103.data(), w104.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op22); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #22" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op22, xnn_delete_operator); |
| |
| xnn_operator_t op23 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 192 /* input channels per group */, |
| 64 /* output_channels_per_group */, |
| 192 /* input pixel stride */, |
| 64 /* output pixel stride */, |
| w105.data(), w106.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op23); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #23" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op23, xnn_delete_operator); |
| |
| xnn_operator_t op24 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 64 /* input channels per group */, |
| 384 /* output_channels_per_group */, |
| 64 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w107.data(), w108.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op24); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #24" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op24, xnn_delete_operator); |
| |
| xnn_operator_t op25 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 384 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w109.data(), w110.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op25); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #25" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op25, xnn_delete_operator); |
| |
| xnn_operator_t op26 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 384 /* input channels per group */, |
| 64 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 64 /* output pixel stride */, |
| w111.data(), w112.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op26); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #26" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op26, xnn_delete_operator); |
| |
| xnn_operator_t op27 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op27); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #27" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op27, xnn_delete_operator); |
| |
| xnn_operator_t op28 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 64 /* input channels per group */, |
| 384 /* output_channels_per_group */, |
| 64 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w113.data(), w114.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op28); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #28" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op28, xnn_delete_operator); |
| |
| xnn_operator_t op29 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 384 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w115.data(), w116.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op29); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #29" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op29, xnn_delete_operator); |
| |
| xnn_operator_t op30 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 384 /* input channels per group */, |
| 64 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 64 /* output pixel stride */, |
| w117.data(), w118.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op30); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #30" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op30, xnn_delete_operator); |
| |
| xnn_operator_t op31 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op31); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #31" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op31, xnn_delete_operator); |
| |
| xnn_operator_t op32 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 64 /* input channels per group */, |
| 384 /* output_channels_per_group */, |
| 64 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w119.data(), w120.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op32); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #32" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op32, xnn_delete_operator); |
| |
| xnn_operator_t op33 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 384 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w121.data(), w122.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op33); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #33" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op33, xnn_delete_operator); |
| |
| xnn_operator_t op34 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 384 /* input channels per group */, |
| 64 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 64 /* output pixel stride */, |
| w123.data(), w124.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op34); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #34" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op34, xnn_delete_operator); |
| |
| xnn_operator_t op35 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op35); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #35" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op35, xnn_delete_operator); |
| |
| xnn_operator_t op36 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 64 /* input channels per group */, |
| 384 /* output_channels_per_group */, |
| 64 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w125.data(), w126.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op36); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #36" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op36, xnn_delete_operator); |
| |
| xnn_operator_t op37 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 384 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 384 /* output pixel stride */, |
| w127.data(), w128.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op37); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #37" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op37, xnn_delete_operator); |
| |
| xnn_operator_t op38 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 384 /* input channels per group */, |
| 96 /* output_channels_per_group */, |
| 384 /* input pixel stride */, |
| 96 /* output pixel stride */, |
| w129.data(), w130.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op38); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #38" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op38, xnn_delete_operator); |
| |
| xnn_operator_t op39 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 96 /* input channels per group */, |
| 576 /* output_channels_per_group */, |
| 96 /* input pixel stride */, |
| 576 /* output pixel stride */, |
| w131.data(), w132.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op39); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #39" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op39, xnn_delete_operator); |
| |
| xnn_operator_t op40 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 576 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 576 /* input pixel stride */, |
| 576 /* output pixel stride */, |
| w133.data(), w134.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op40); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #40" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op40, xnn_delete_operator); |
| |
| xnn_operator_t op41 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 576 /* input channels per group */, |
| 96 /* output_channels_per_group */, |
| 576 /* input pixel stride */, |
| 96 /* output pixel stride */, |
| w135.data(), w136.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op41); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #41" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op41, xnn_delete_operator); |
| |
| xnn_operator_t op42 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op42); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #42" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op42, xnn_delete_operator); |
| |
| xnn_operator_t op43 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 96 /* input channels per group */, |
| 576 /* output_channels_per_group */, |
| 96 /* input pixel stride */, |
| 576 /* output pixel stride */, |
| w137.data(), w138.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op43); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #43" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op43, xnn_delete_operator); |
| |
| xnn_operator_t op44 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 576 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 576 /* input pixel stride */, |
| 576 /* output pixel stride */, |
| w139.data(), w140.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op44); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #44" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op44, xnn_delete_operator); |
| |
| xnn_operator_t op45 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 576 /* input channels per group */, |
| 96 /* output_channels_per_group */, |
| 576 /* input pixel stride */, |
| 96 /* output pixel stride */, |
| w141.data(), w142.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op45); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #45" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op45, xnn_delete_operator); |
| |
| xnn_operator_t op46 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op46); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #46" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op46, xnn_delete_operator); |
| |
| xnn_operator_t op47 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 96 /* input channels per group */, |
| 576 /* output_channels_per_group */, |
| 96 /* input pixel stride */, |
| 576 /* output pixel stride */, |
| w143.data(), w144.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op47); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #47" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op47, xnn_delete_operator); |
| |
| xnn_operator_t op48 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 0 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 576 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 576 /* input pixel stride */, |
| 576 /* output pixel stride */, |
| w145.data(), w146.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op48); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #48" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op48, xnn_delete_operator); |
| |
| xnn_operator_t op49 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 576 /* input channels per group */, |
| 160 /* output_channels_per_group */, |
| 576 /* input pixel stride */, |
| 160 /* output pixel stride */, |
| w147.data(), w148.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op49); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #49" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op49, xnn_delete_operator); |
| |
| xnn_operator_t op50 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 160 /* input channels per group */, |
| 960 /* output_channels_per_group */, |
| 160 /* input pixel stride */, |
| 960 /* output pixel stride */, |
| w149.data(), w150.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op50); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #50" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op50, xnn_delete_operator); |
| |
| xnn_operator_t op51 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 960 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 960 /* input pixel stride */, |
| 960 /* output pixel stride */, |
| w151.data(), w152.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op51); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #51" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op51, xnn_delete_operator); |
| |
| xnn_operator_t op52 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 960 /* input channels per group */, |
| 160 /* output_channels_per_group */, |
| 960 /* input pixel stride */, |
| 160 /* output pixel stride */, |
| w153.data(), w154.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op52); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #52" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op52, xnn_delete_operator); |
| |
| xnn_operator_t op53 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op53); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #53" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op53, xnn_delete_operator); |
| |
| xnn_operator_t op54 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 160 /* input channels per group */, |
| 960 /* output_channels_per_group */, |
| 160 /* input pixel stride */, |
| 960 /* output pixel stride */, |
| w155.data(), w156.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op54); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #54" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op54, xnn_delete_operator); |
| |
| xnn_operator_t op55 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 960 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 960 /* input pixel stride */, |
| 960 /* output pixel stride */, |
| w157.data(), w158.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op55); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #55" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op55, xnn_delete_operator); |
| |
| xnn_operator_t op56 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 960 /* input channels per group */, |
| 160 /* output_channels_per_group */, |
| 960 /* input pixel stride */, |
| 160 /* output pixel stride */, |
| w159.data(), w160.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op56); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #56" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op56, xnn_delete_operator); |
| |
| xnn_operator_t op57 = nullptr; |
| status = xnn_create_add_nd_f32( |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op57); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #57" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op57, xnn_delete_operator); |
| |
| xnn_operator_t op58 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 160 /* input channels per group */, |
| 960 /* output_channels_per_group */, |
| 160 /* input pixel stride */, |
| 960 /* output pixel stride */, |
| w161.data(), w162.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op58); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #58" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op58, xnn_delete_operator); |
| |
| xnn_operator_t op59 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 960 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 960 /* input pixel stride */, |
| 960 /* output pixel stride */, |
| w163.data(), w164.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op59); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #59" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op59, xnn_delete_operator); |
| |
| xnn_operator_t op60 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 960 /* input channels per group */, |
| 320 /* output_channels_per_group */, |
| 960 /* input pixel stride */, |
| 320 /* output pixel stride */, |
| w165.data(), w166.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op60); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #60" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op60, xnn_delete_operator); |
| |
| xnn_operator_t op61 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 320 /* input channels per group */, |
| 1280 /* output_channels_per_group */, |
| 320 /* input pixel stride */, |
| 1280 /* output pixel stride */, |
| w167.data(), w168.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &op61); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #61" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op61, xnn_delete_operator); |
| |
| xnn_operator_t op62 = nullptr; |
| status = xnn_create_global_average_pooling_nwc_f32( |
| 1280 /* channels */, 1280 /* input stride */, 1280 /* output stride */, |
| -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
| 0 /* flags */, |
| &op62); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #62" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op62, xnn_delete_operator); |
| |
| xnn_operator_t op63 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 1280 /* input channels per group */, |
| 1001 /* output_channels_per_group */, |
| 1280 /* input pixel stride */, |
| 1001 /* output pixel stride */, |
| w169.data(), w170.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &op63); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #63" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op63, xnn_delete_operator); |
| |
| |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op0, |
| 1 /* batch size */, 224 /* input height */, 224 /* input width */, |
| v0.data() /* input */, v1.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #0" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op1, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v1.data() /* input */, v2.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #1" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op2, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v2.data() /* input */, v3.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #2" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op3, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v3.data() /* input */, v4.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #3" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op4, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v4.data() /* input */, v5.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #4" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op5, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v5.data() /* input */, v6.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #5" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op6, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v6.data() /* input */, v7.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #6" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op7, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v7.data() /* input */, v8.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #7" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op8, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v8.data() /* input */, v9.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #8" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 56, 56, 24 }; |
| const size_t b_shape[] = { 1, 56, 56, 24 }; |
| status = xnn_setup_add_nd_f32( |
| op9, |
| 4, a_shape, 4, b_shape, |
| v9.data() /* a */, v6.data() /* b */, v10.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #9" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op10, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v10.data() /* input */, v11.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #10" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op11, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v11.data() /* input */, v12.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #11" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op12, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v12.data() /* input */, v13.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #12" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op13, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v13.data() /* input */, v14.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #13" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op14, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v14.data() /* input */, v15.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #14" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op15, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v15.data() /* input */, v16.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #15" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 28, 28, 32 }; |
| const size_t b_shape[] = { 1, 28, 28, 32 }; |
| status = xnn_setup_add_nd_f32( |
| op16, |
| 4, a_shape, 4, b_shape, |
| v16.data() /* a */, v13.data() /* b */, v17.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #16" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op17, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v17.data() /* input */, v18.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #17" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op18, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v18.data() /* input */, v19.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #18" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op19, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v19.data() /* input */, v20.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #19" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 28, 28, 32 }; |
| const size_t b_shape[] = { 1, 28, 28, 32 }; |
| status = xnn_setup_add_nd_f32( |
| op20, |
| 4, a_shape, 4, b_shape, |
| v20.data() /* a */, v17.data() /* b */, v21.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #20" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op21, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v21.data() /* input */, v22.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #21" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op22, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v22.data() /* input */, v23.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #22" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op23, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v23.data() /* input */, v24.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #23" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op24, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v24.data() /* input */, v25.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #24" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op25, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v25.data() /* input */, v26.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #25" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op26, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v26.data() /* input */, v27.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #26" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 14, 14, 64 }; |
| const size_t b_shape[] = { 1, 14, 14, 64 }; |
| status = xnn_setup_add_nd_f32( |
| op27, |
| 4, a_shape, 4, b_shape, |
| v27.data() /* a */, v24.data() /* b */, v28.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #27" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op28, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v28.data() /* input */, v29.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #28" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op29, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v29.data() /* input */, v30.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #29" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op30, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v30.data() /* input */, v31.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #30" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 14, 14, 64 }; |
| const size_t b_shape[] = { 1, 14, 14, 64 }; |
| status = xnn_setup_add_nd_f32( |
| op31, |
| 4, a_shape, 4, b_shape, |
| v31.data() /* a */, v28.data() /* b */, v32.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #31" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op32, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v32.data() /* input */, v33.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #32" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op33, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v33.data() /* input */, v34.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #33" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op34, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v34.data() /* input */, v35.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #34" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 14, 14, 64 }; |
| const size_t b_shape[] = { 1, 14, 14, 64 }; |
| status = xnn_setup_add_nd_f32( |
| op35, |
| 4, a_shape, 4, b_shape, |
| v35.data() /* a */, v32.data() /* b */, v36.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #35" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op36, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v36.data() /* input */, v37.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #36" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op37, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v37.data() /* input */, v38.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #37" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op38, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v38.data() /* input */, v39.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #38" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op39, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v39.data() /* input */, v40.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #39" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op40, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v40.data() /* input */, v41.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #40" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op41, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v41.data() /* input */, v42.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #41" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 14, 14, 96 }; |
| const size_t b_shape[] = { 1, 14, 14, 96 }; |
| status = xnn_setup_add_nd_f32( |
| op42, |
| 4, a_shape, 4, b_shape, |
| v42.data() /* a */, v39.data() /* b */, v43.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #42" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op43, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v43.data() /* input */, v44.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #43" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op44, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v44.data() /* input */, v45.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #44" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op45, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v45.data() /* input */, v46.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #45" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 14, 14, 96 }; |
| const size_t b_shape[] = { 1, 14, 14, 96 }; |
| status = xnn_setup_add_nd_f32( |
| op46, |
| 4, a_shape, 4, b_shape, |
| v46.data() /* a */, v43.data() /* b */, v47.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #46" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op47, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v47.data() /* input */, v48.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #47" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op48, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v48.data() /* input */, v49.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #48" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op49, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v49.data() /* input */, v50.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #49" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op50, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v50.data() /* input */, v51.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #50" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op51, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v51.data() /* input */, v52.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #51" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op52, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v52.data() /* input */, v53.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #52" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 7, 7, 160 }; |
| const size_t b_shape[] = { 1, 7, 7, 160 }; |
| status = xnn_setup_add_nd_f32( |
| op53, |
| 4, a_shape, 4, b_shape, |
| v53.data() /* a */, v50.data() /* b */, v54.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #53" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op54, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v54.data() /* input */, v55.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #54" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op55, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v55.data() /* input */, v56.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #55" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op56, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v56.data() /* input */, v57.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #56" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| { |
| const size_t a_shape[] = { 1, 7, 7, 160 }; |
| const size_t b_shape[] = { 1, 7, 7, 160 }; |
| status = xnn_setup_add_nd_f32( |
| op57, |
| 4, a_shape, 4, b_shape, |
| v57.data() /* a */, v54.data() /* b */, v58.data() /* output */, |
| threadpool /* threadpool */); |
| } |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #57" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op58, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v58.data() /* input */, v59.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #58" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op59, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v59.data() /* input */, v60.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #59" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op60, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v60.data() /* input */, v61.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #60" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op61, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v61.data() /* input */, v62.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #61" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_global_average_pooling_nwc_f32( |
| op62, |
| 1 /* batch size */, 49 /* width */, |
| v62.data() /* input */, v63.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #62" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op63, |
| 1 /* batch size */, 1 /* input height */, 1 /* input width */, |
| v63.data() /* input */, v64.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #63" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wpessimizing-move" |
| return operators; |
| #pragma clang diagnostic pop |
| } |
| |
| } // namespace models |