| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <cpuinfo.h> |
| |
| #include <benchmark/benchmark.h> |
| #include <fp16/fp16.h> |
| #include "bench/conv.h" |
| #include "bench/utils.h" |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/igemm.h> |
| #include <xnnpack/indirection.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| static void IGEMMBenchmark(benchmark::State& state, |
| xnn_f16_igemm_minmax_ukernel_function f16_igemm, |
| uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr) |
| { |
| if (!cpuinfo_initialize()) { |
| state.SkipWithError("cpuinfo initialization failed"); |
| } |
| if (!benchmark::utils::CheckNEONFP16ARITH(state)) { |
| return; |
| } |
| |
| const size_t input_height = state.range(0); |
| const size_t input_width = state.range(1); |
| const size_t kernel_height = state.range(2); |
| const size_t kernel_width = state.range(3); |
| const size_t kernel_size = kernel_height * kernel_width; |
| const size_t padding_height = state.range(4); |
| const size_t padding_width = state.range(5); |
| const size_t subsampling = state.range(6); |
| const size_t dilation = state.range(7); |
| const size_t group_input_channels = state.range(8); |
| const size_t group_output_channels = state.range(9); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| const size_t output_pixel_stride = group_output_channels; |
| const size_t input_pixel_stride = group_input_channels; |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| const size_t output_size = output_height * output_width; |
| |
| const size_t mc_stride = benchmark::utils::RoundUp<size_t>(output_size, mr); |
| const size_t nc_stride = benchmark::utils::RoundUp<size_t>(group_output_channels, nr); |
| const size_t kc_stride = benchmark::utils::RoundUp<size_t>(group_input_channels, kr); |
| |
| std::vector<uint16_t> a(input_height * input_width * input_pixel_stride); |
| std::generate(a.begin(), a.end(), std::ref(f16rng)); |
| std::vector<uint16_t> k(group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(k.begin(), k.end(), std::ref(f16rng)); |
| std::vector<uint16_t> b(group_output_channels); |
| std::generate(b.begin(), b.end(), std::ref(f16rng)); |
| |
| std::vector<uint16_t> z(group_input_channels); |
| |
| const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; |
| const size_t i_elements = mc_stride * kernel_size; |
| const size_t c_elements = output_height * output_width * output_pixel_stride; |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements); |
| |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 32>> w(w_elements * num_buffers); |
| std::fill(w.begin(), w.end(), 0); |
| xnn_pack_f16_conv_goki_w( |
| 1 /* groups */, group_output_channels, kernel_size, group_input_channels, |
| nr, kr, sr, k.data(), b.data(), w.data(), nullptr); |
| for (size_t n = 1; n < num_buffers; n++) { |
| std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); |
| } |
| |
| std::vector<const uint16_t*> i(i_elements * num_buffers); |
| xnn_operator convolution_op = { }; |
| convolution_op.indirection_buffer = reinterpret_cast<const void**>(i.data()); |
| convolution_op.input = a.data(); |
| convolution_op.input_pixel_stride = input_pixel_stride; |
| convolution_op.zero_buffer = z.data(); |
| convolution_op.groups = 1; |
| convolution_op.group_input_channels = group_input_channels; |
| convolution_op.batch_size = 1; |
| convolution_op.input_height = input_height; |
| convolution_op.input_width = input_width; |
| convolution_op.output_height = output_height; |
| convolution_op.output_width = output_width; |
| convolution_op.kernel_height = kernel_height; |
| convolution_op.kernel_width = kernel_width; |
| convolution_op.stride_height = subsampling; |
| convolution_op.stride_width = subsampling; |
| convolution_op.dilation_height = dilation; |
| convolution_op.dilation_width = dilation; |
| convolution_op.padding_top = padding_top; |
| convolution_op.padding_left = padding_left; |
| xnn_indirection_init_conv2d(&convolution_op, mr, 1 /* log2(sizeof(uint16_t)) */); |
| for (size_t n = 1; n < num_buffers; n++) { |
| std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements); |
| } |
| |
| std::vector<uint16_t> c(c_elements * num_buffers); |
| std::fill(c.begin(), c.end(), std::nanf("")); |
| |
| // Prepare minmax parameters. |
| xnn_f16_scaleminmax_params params; |
| params = xnn_init_f16_scaleminmax_params( |
| UINT16_C(0x3C00), /* 1.0 */ |
| UINT16_C(0x7C00), /* inf */ |
| UINT16_C(0xFC00)); /* -inf */ |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| for (uint32_t m = 0; m < output_size; m += mr) { |
| const uint32_t mb = min(output_size - m, mr); |
| for (uint32_t n = 0; n < group_output_channels; n += nr) { |
| const uint32_t nb = min(group_output_channels - n, nr); |
| f16_igemm( |
| mb, nb, group_input_channels * sizeof(uint16_t), kernel_size * mr * sizeof(void*), |
| reinterpret_cast<const void**>(i.data()) + buffer_index * i_elements + m, |
| w.data() + buffer_index * w_elements + n * (kc_stride * kernel_size + 1), |
| c.data() + buffer_index * c_elements + m * group_output_channels + n, group_output_channels * sizeof(uint16_t), nr * sizeof(uint16_t), |
| 0, z.data(), ¶ms); |
| } |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| output_height * output_width * |
| group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| |
| #if XNN_ARCH_ARM64 |
| static void f16_igemm_1x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_1x8__neonfp16arith_ld64, 1, 8, 1, 1); |
| } |
| |
| static void f16_igemm_4x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_4x8__neonfp16arith_ld64, 4, 8, 1, 1); |
| } |
| |
| static void f16_igemm_6x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_6x8__neonfp16arith_ld64, 6, 8, 1, 1); |
| } |
| |
| static void f16_igemm_8x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_8x8__neonfp16arith_ld64, 8, 8, 1, 1); |
| } |
| |
| static void f16_igemm_1x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_1x16__neonfp16arith_ld64, 1, 16, 1, 1); |
| } |
| |
| static void f16_igemm_4x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_4x16__neonfp16arith_ld64, 4, 16, 1, 1); |
| } |
| |
| static void f16_igemm_6x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_6x16__neonfp16arith_ld64, 6, 16, 1, 1); |
| } |
| |
| static void f16_igemm_8x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
| IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_8x16__neonfp16arith_ld64, 8, 16, 1, 1); |
| } |
| |
| BENCHMARK_CONV(f16_igemm_1x8__neonfp16arith_ld64) |
| BENCHMARK_CONV(f16_igemm_4x8__neonfp16arith_ld64) |
| BENCHMARK_CONV(f16_igemm_6x8__neonfp16arith_ld64) |
| BENCHMARK_CONV(f16_igemm_8x8__neonfp16arith_ld64) |
| |
| BENCHMARK_CONV(f16_igemm_1x16__neonfp16arith_ld64) |
| BENCHMARK_CONV(f16_igemm_4x16__neonfp16arith_ld64) |
| BENCHMARK_CONV(f16_igemm_6x16__neonfp16arith_ld64) |
| BENCHMARK_CONV(f16_igemm_8x16__neonfp16arith_ld64) |
| #endif /* XNN_ARCH_ARM64 */ |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |