| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <cpuinfo.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/dconv.h" |
| #include "bench/utils.h" |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/conv.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| static void DConvHWC2CHW3X3S2P1Benchmark(benchmark::State& state, |
| xnn_f32_conv_hwc2chw_ukernel_function conv, |
| uint32_t output_channels_tile, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t input_height = state.range(0); |
| const size_t input_width = state.range(1); |
| const size_t output_channels = state.range(2); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
| |
| const size_t input_channels = 3; |
| const size_t kernel_size = 3; |
| const size_t padding = 1; |
| const size_t subsampling = 2; |
| |
| const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1; |
| const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1; |
| |
| std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| std::vector<float> bias(output_channels); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| |
| std::vector<float, AlignedAllocator<float, 32>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float)); |
| |
| const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) * |
| benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile); |
| const size_t output_elements = output_height * output_width * output_channels; |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(float) * (weights_elements + output_elements)); |
| |
| std::vector<float, AlignedAllocator<float, 32>> packed_weights(weights_elements * num_buffers); |
| std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
| xnn_pack_f32_dconv_oki_w( |
| output_channels, input_channels, output_channels_tile, |
| kernel_size /* kernel height */, kernel_size /* kernel width */, |
| kernel.data(), bias.data(), packed_weights.data(), NULL); |
| for (size_t n = 1; n < num_buffers; n++) { |
| std::copy(packed_weights.cbegin(), |
| packed_weights.cbegin() + weights_elements, |
| packed_weights.begin() + n * weights_elements); |
| } |
| |
| std::vector<float> output(output_elements * num_buffers); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_f32_minmax_params params = |
| xnn_init_f32_minmax_params(-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity()); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| conv( |
| input_height, input_width, |
| 0 /* output_y_start */, output_height /* output_y_end */, |
| input.data(), zero.data(), |
| packed_weights.data() + buffer_index * weights_elements, |
| output.data() + buffer_index * output_elements, |
| padding, output_channels, |
| output_channels * output_width * sizeof(float), |
| output_channels * sizeof(float), |
| ¶ms); |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| output_height * output_width * |
| input_channels * output_channels * |
| kernel_size * kernel_size, |
| benchmark::Counter::kIsRate); |
| } |
| |
| #if XNN_ARCH_ARM64 |
| static void f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2(benchmark::State& state, const char* net) { |
| DConvHWC2CHW3X3S2P1Benchmark(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__neonfma_2x2, 4, benchmark::utils::CheckNEONFMA); |
| } |
| |
| BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2); |
| #endif |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| static void f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1(benchmark::State& state, const char* net) { |
| DConvHWC2CHW3X3S2P1Benchmark(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1, 4); |
| } |
| |
| BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1); |
| |
| static void f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2(benchmark::State& state, const char* net) { |
| DConvHWC2CHW3X3S2P1Benchmark(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_2x2, 4); |
| } |
| |
| BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2); |
| #endif |
| |
| #if XNN_ARCH_WASMSIMD |
| static void f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2(benchmark::State& state, const char* net) { |
| DConvHWC2CHW3X3S2P1Benchmark(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__wasmsimd_2x2, 4); |
| } |
| |
| BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2); |
| #endif // XNN_ARCH_WASMSIMD |
| |
| static void f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1(benchmark::State& state, const char* net) { |
| DConvHWC2CHW3X3S2P1Benchmark(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1, 4); |
| } |
| |
| BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1); |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |