| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include <fp16.h> |
| #include "bench/utils.h" |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| static void global_average_pooling_qu8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t channels = state.range(3); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| std::vector<uint8_t> input(batch_size * input_height * input_width * channels); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::vector<uint8_t> output(batch_size * channels); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| } |
| |
| xnn_operator_t global_pooling_op = nullptr; |
| status = xnn_create_global_average_pooling_nwc_qu8( |
| channels, channels /* input stride */, channels /* output stride */, |
| 127 /* input zero point */, 0.75f /* input scale */, |
| 127 /* output zero point */, 1.25f /* output scale */, |
| 0, 255, |
| 0 /* flags */, &global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Global Average Pooling operator"); |
| } |
| |
| status = xnn_setup_global_average_pooling_nwc_qu8( |
| global_pooling_op, |
| batch_size, input_height * input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Global Average Pooling operator"); |
| } |
| |
| for (auto _ : state) { |
| xnn_run_operator(global_pooling_op, nullptr /* thread pool */); |
| } |
| |
| status = xnn_delete_operator(global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Global Average Pooling operator"); |
| } |
| global_pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + 1) * channels * sizeof(uint8_t), |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifndef XNN_NO_QS8_OPERATORS |
| static void global_average_pooling_qs8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t channels = state.range(3); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<uint32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng)); |
| |
| std::vector<int8_t> input(batch_size * input_height * input_width * channels); |
| std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| std::vector<int8_t> output(batch_size * channels); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| } |
| |
| xnn_operator_t global_pooling_op = nullptr; |
| status = xnn_create_global_average_pooling_nwc_qs8( |
| channels, channels /* input stride */, channels /* output stride */, |
| -1 /* input zero point */, 0.75f /* input scale */, |
| -1 /* output zero point */, 1.25f /* output scale */, |
| -128, 127, |
| 0 /* flags */, &global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Global Average Pooling operator"); |
| } |
| |
| status = xnn_setup_global_average_pooling_nwc_qs8( |
| global_pooling_op, |
| batch_size, input_height * input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Global Average Pooling operator"); |
| } |
| |
| for (auto _ : state) { |
| xnn_run_operator(global_pooling_op, nullptr /* thread pool */); |
| } |
| |
| status = xnn_delete_operator(global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Global Average Pooling operator"); |
| } |
| global_pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + 1) * channels * sizeof(int8_t), |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QS8_OPERATORS |
| |
| #ifndef XNN_NO_F16_OPERATORS |
| static void global_average_pooling_f16(benchmark::State& state) { |
| if (!benchmark::utils::CheckNEONFP16ARITH(state)) { |
| return; |
| } |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t channels = state.range(3); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> input(batch_size * input_height * input_width * channels); |
| std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| std::vector<uint16_t> output(batch_size * channels); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| } |
| |
| xnn_operator_t global_pooling_op = nullptr; |
| status = xnn_create_global_average_pooling_nwc_f16( |
| channels, channels /* input stride */, channels /* output stride */, |
| -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), |
| 0 /* flags */, &global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Global Average Pooling operator"); |
| } |
| |
| status = xnn_setup_global_average_pooling_nwc_f16( |
| global_pooling_op, |
| batch_size, input_height * input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Global Average Pooling operator"); |
| } |
| |
| for (auto _ : state) { |
| xnn_run_operator(global_pooling_op, nullptr /* thread pool */); |
| } |
| |
| status = xnn_delete_operator(global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Global Average Pooling operator"); |
| } |
| global_pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + 1) * channels * sizeof(uint16_t), |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_F16_OPERATORS |
| |
| static void global_average_pooling_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t channels = state.range(3); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
| |
| std::vector<float> input(batch_size * input_height * input_width * channels); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> output(batch_size * channels); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| } |
| |
| xnn_operator_t global_pooling_op = nullptr; |
| status = xnn_create_global_average_pooling_nwc_f32( |
| channels, channels /* input stride */, channels /* output stride */, |
| -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), |
| 0 /* flags */, &global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Global Average Pooling operator"); |
| } |
| |
| status = xnn_setup_global_average_pooling_nwc_f32( |
| global_pooling_op, |
| batch_size, input_height * input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Global Average Pooling operator"); |
| } |
| |
| for (auto _ : state) { |
| xnn_run_operator(global_pooling_op, nullptr /* thread pool */); |
| } |
| |
| status = xnn_delete_operator(global_pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Global Average Pooling operator"); |
| } |
| global_pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + 1) * channels * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| |
| static void ImageNetArguments(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "C"}); |
| |
| /* N IH IW C */ |
| b->Args({1, 7, 7, 1000}); |
| b->Args({1, 13, 13, 1000}); |
| } |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| BENCHMARK(global_average_pooling_qu8)->Apply(ImageNetArguments)->UseRealTime(); |
| #endif // XNN_NO_QU8_OPERATORS |
| #ifndef XNN_NO_QS8_OPERATORS |
| BENCHMARK(global_average_pooling_qs8)->Apply(ImageNetArguments)->UseRealTime(); |
| #endif // XNN_NO_QS8_OPERATORS |
| #ifndef XNN_NO_F16_OPERATORS |
| BENCHMARK(global_average_pooling_f16)->Apply(ImageNetArguments)->UseRealTime(); |
| #endif // XNN_NO_F16_OPERATORS |
| BENCHMARK(global_average_pooling_f32)->Apply(ImageNetArguments)->UseRealTime(); |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |