| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| |
| |
| void max_pooling_u8(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t pooling_size = state.range(3); |
| const size_t padding_size = state.range(4); |
| const size_t stride = state.range(5); |
| const size_t channels = state.range(6); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
| const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
| |
| std::vector<uint8_t> input(batch_size * input_height * input_width * channels); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::vector<uint8_t> output(batch_size * output_height * output_width * channels); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t pooling_op = nullptr; |
| status = xnn_create_max_pooling2d_nhwc_u8( |
| padding_size, padding_size, padding_size, padding_size, |
| pooling_size, pooling_size, |
| stride, stride, |
| 1 /* dilation height */, 1 /* dilation width */, |
| channels, channels /* input pixel stride */, channels /* output pixel stride */, |
| 0, 255, |
| 0 /* flags */, &pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Max Pooling operator"); |
| return; |
| } |
| |
| status = xnn_setup_max_pooling2d_nhwc_u8( |
| pooling_op, |
| batch_size, input_height, input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Max Pooling operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(pooling_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Max Pooling operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Max Pooling operator"); |
| return; |
| } |
| pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(uint8_t), |
| benchmark::Counter::kIsRate); |
| } |
| |
| void max_pooling_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t pooling_size = state.range(3); |
| const size_t padding_size = state.range(4); |
| const size_t stride = state.range(5); |
| const size_t channels = state.range(6); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
| |
| const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
| const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
| |
| std::vector<float> input(batch_size * input_height * input_width * channels); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> output(batch_size * output_height * output_width * channels); |
| std::fill(output.begin(), output.end(), nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t pooling_op = nullptr; |
| status = xnn_create_max_pooling2d_nhwc_f32( |
| padding_size, padding_size, padding_size, padding_size, |
| pooling_size, pooling_size, |
| stride, stride, |
| 1 /* dilation height */, 1 /* dilation width */, |
| channels, channels /* input pixel stride */, channels /* output pixel stride */, |
| -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), |
| 0 /* flags */, &pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Max Pooling operator"); |
| return; |
| } |
| |
| status = xnn_setup_max_pooling2d_nhwc_f32( |
| pooling_op, |
| batch_size, input_height, input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Max Pooling operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(pooling_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Max Pooling operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Max Pooling operator"); |
| return; |
| } |
| pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| |
| // ShuffleNet v1/v2. |
| static void ShuffleNet(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 112, 112, 3, 1, 2, 24}); |
| } |
| |
| // SqueezeNet 1.0 |
| static void SqueezeNetV10(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /*********** MaxPool 1 ************/ |
| /* N H W K P S C */ |
| b->Args({1, 111, 111, 3, 0, 2, 96}); |
| /*********** MaxPool 4 ************/ |
| /* N H W K P S C */ |
| b->Args({1, 27, 27, 3, 0, 2, 256}); |
| /*********** MaxPool 8 ************/ |
| /* N H W K P S C */ |
| b->Args({1, 13, 13, 3, 0, 2, 512}); |
| } |
| |
| // SqueezeNet 1.1 |
| static void SqueezeNetV11(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /*********** MaxPool 1 ***********/ |
| /* N H W K P S C */ |
| b->Args({1, 111, 111, 3, 0, 2, 64}); |
| /*********** MaxPool 3 ************/ |
| /* N H W K P S C */ |
| b->Args({1, 55, 55, 3, 0, 2, 128}); |
| /*********** MaxPool 5 ************/ |
| /* N H W K P S C */ |
| b->Args({1, 13, 13, 3, 0, 2, 256}); |
| } |
| |
| static void VGG(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 224, 224, 2, 1, 2, 64}); |
| b->Args({1, 112, 112, 2, 1, 2, 128}); |
| b->Args({1, 56, 56, 2, 1, 2, 256}); |
| b->Args({1, 28, 28, 2, 1, 2, 512}); |
| b->Args({1, 14, 14, 2, 1, 2, 512}); |
| } |
| |
| BENCHMARK_CAPTURE(max_pooling_f32, shufflenet, "ShuffleNet v1/v2")->Apply(ShuffleNet)->UseRealTime(); |
| BENCHMARK_CAPTURE(max_pooling_f32, squeezenet_v10, "SqueezeNet v1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(max_pooling_f32, squeezenet_v11, "SqueezeNet v1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(max_pooling_f32, vgg, "VGG")->Apply(VGG); |
| |
| BENCHMARK_CAPTURE(max_pooling_u8, shufflenet, "ShuffleNet v1/v2")->Apply(ShuffleNet)->UseRealTime(); |
| BENCHMARK_CAPTURE(max_pooling_u8, squeezenet_v10, "SqueezeNet v1.0")->Apply(SqueezeNetV10)->UseRealTime(); |
| BENCHMARK_CAPTURE(max_pooling_u8, squeezenet_v11, "SqueezeNet v1.1")->Apply(SqueezeNetV11)->UseRealTime(); |
| BENCHMARK_CAPTURE(max_pooling_u8, vgg, "VGG")->Apply(VGG); |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |