| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| |
| void xnnpack_prelu_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t height = state.range(1); |
| const size_t width = state.range(2); |
| const size_t channels = state.range(3); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), std::ref(rng)); |
| |
| std::vector<float> input(batch_size * height * width * channels + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32irng)); |
| std::vector<float> slope(channels); |
| std::generate(slope.begin(), slope.end(), std::ref(f32wrng)); |
| std::vector<float> output(batch_size * height * width * channels); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t prelu_op = nullptr; |
| status = xnn_create_prelu_nc_f32( |
| channels, channels /* input stride */, channels /* output stride */, |
| slope.data(), |
| 0 /* flags */, &prelu_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create FP32 PReLU operator"); |
| return; |
| } |
| |
| status = xnn_setup_prelu_nc_f32( |
| prelu_op, |
| batch_size * height * width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup FP32 PReLU operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(prelu_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run FP32 PReLU operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(prelu_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete FP32 PReLU operator"); |
| return; |
| } |
| prelu_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = batch_size * height * width * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = (2 * elements_per_iteration + channels) * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| void tflite_prelu_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t height = state.range(1); |
| const size_t width = state.range(2); |
| const size_t channels = state.range(3); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), std::ref(rng)); |
| |
| std::vector<float> slope(channels); |
| std::generate(slope.begin(), slope.end(), std::ref(f32wrng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_PRELU); |
| |
| flatbuffers::Offset<tflite::Buffer> buffers[2] = { |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| tflite::CreateBuffer(builder, builder.CreateVector( |
| reinterpret_cast<const uint8_t*>(slope.data()), |
| sizeof(float) * slope.size())), |
| }; |
| |
| const int32_t input_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(height), |
| static_cast<int32_t>(width), |
| static_cast<int32_t>(channels) |
| }; |
| const int32_t output_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(height), |
| static_cast<int32_t>(width), |
| static_cast<int32_t>(channels) |
| }; |
| const int32_t slope_shape[1] = { |
| static_cast<int32_t>(channels) |
| }; |
| |
| flatbuffers::Offset<tflite::Tensor> tensors[3] = { |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(input_shape, 4), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(slope_shape, 1), |
| tflite::TensorType_FLOAT32, |
| 1 /* buffer id */), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(output_shape, 4), |
| tflite::TensorType_FLOAT32), |
| }; |
| |
| const int32_t op_inputs[2] = { 0, 1 }; |
| const int32_t op_outputs[1] = { 2 }; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs, 2), |
| builder.CreateVector<int32_t>(op_outputs, 1)); |
| |
| const int32_t graph_inputs[1] = { 0 }; |
| const int32_t graph_outputs[1] = { 2 }; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors, 3), |
| builder.CreateVector<int32_t>(graph_inputs, 1), |
| builder.CreateVector<int32_t>(graph_outputs, 1), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("PReLU model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers, 2)); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolver resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| if (interpreter == nullptr) { |
| state.SkipWithError("TFLite interpreter is null"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size * height * width * channels, |
| std::ref(f32irng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = batch_size * height * width * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = (2 * elements_per_iteration + channels) * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| // Characteristic arguments for ImageNet classification models |
| static void ImageNet(benchmark::internal::Benchmark* b) |
| { |
| b->ArgNames({"N", "H", "W", "C"}); |
| |
| int32_t c = 16; |
| for (int32_t hw = 224 / 2; hw >= 7; hw /= 2) { |
| b->Args({1, hw, hw, c}); |
| b->Args({1, hw, hw, c * 2}); |
| c *= 2; |
| } |
| } |
| |
| BENCHMARK_CAPTURE(xnnpack_prelu_f32, imagenet, "ImageNet 224x224")->Apply(ImageNet)->UseRealTime(); |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK_CAPTURE(tflite_prelu_f32, imagenet, "ImageNet 224x224")->Apply(ImageNet)->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |