| // Auto-generated file. Do not edit! |
| // Template: src/qs8-igemm/MRx4c8-sse.c.in |
| // Generator: tools/xngen |
| // |
| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| |
| #ifdef __GNUC__ |
| #include <x86intrin.h> |
| #else |
| #include <immintrin.h> |
| #include <ammintrin.h> |
| #endif |
| |
| #include <xnnpack/igemm.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_qs8_igemm_minmax_ukernel_2x4c8__xop_ld128( |
| size_t mr, |
| size_t nc, |
| size_t kc, |
| size_t ks, |
| const int8_t** restrict a, |
| const void* restrict w, |
| int8_t* restrict c, |
| size_t cm_stride, |
| size_t cn_stride, |
| size_t a_offset, |
| const int8_t* zero, |
| const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN |
| { |
| assert(mr != 0); |
| assert(mr <= 2); |
| assert(nc != 0); |
| assert(kc != 0); |
| assert(ks != 0); |
| assert(ks % (2 * sizeof(void*)) == 0); |
| assert(a_offset % sizeof(int8_t) == 0); |
| assert(a != NULL); |
| assert(w != NULL); |
| assert(c != NULL); |
| |
| kc = round_up_po2(kc, 8); |
| int8_t* c0 = c; |
| int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride); |
| if XNN_UNPREDICTABLE(mr != 2) { |
| c1 = c0; |
| } |
| |
| do { |
| __m128i vacc0x0 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[0]); |
| __m128i vacc0x1 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[1]); |
| __m128i vacc0x2 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[2]); |
| __m128i vacc0x3 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[3]); |
| __m128i vacc1x0 = vacc0x0; |
| __m128i vacc1x1 = vacc0x1; |
| __m128i vacc1x2 = vacc0x2; |
| __m128i vacc1x3 = vacc0x3; |
| w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t)); |
| |
| size_t p = ks; |
| do { |
| const int8_t* restrict a0 = a[0]; |
| if XNN_UNPREDICTABLE(a0 != zero) { |
| a0 = (const int8_t*) ((uintptr_t) a0 + a_offset); |
| } |
| const int8_t* restrict a1 = a[1]; |
| if XNN_UNPREDICTABLE(a1 != zero) { |
| a1 = (const int8_t*) ((uintptr_t) a1 + a_offset); |
| } |
| a += 2; |
| |
| size_t k = 0; |
| while (k < kc) { |
| const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0); |
| const __m128i vxa0 = _mm_cvtepi8_epi16(va0); |
| a0 += 8; |
| const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1); |
| const __m128i vxa1 = _mm_cvtepi8_epi16(va1); |
| a1 += 8; |
| |
| const __m128i vb01 = _mm_load_si128((const __m128i*) w); |
| const __m128i vsb01 = _mm_cmpgt_epi8(_mm_setzero_si128(), vb01); |
| const __m128i vxb0 = _mm_unpacklo_epi8(vb01, vsb01); |
| const __m128i vxb1 = _mm_unpackhi_epi8(vb01, vsb01); |
| |
| vacc0x0 = _mm_maddd_epi16(vxa0, vxb0, vacc0x0); |
| vacc0x1 = _mm_maddd_epi16(vxa0, vxb1, vacc0x1); |
| vacc1x0 = _mm_maddd_epi16(vxa1, vxb0, vacc1x0); |
| vacc1x1 = _mm_maddd_epi16(vxa1, vxb1, vacc1x1); |
| const __m128i vb23 = _mm_load_si128((const __m128i*) ((uintptr_t) w + 16)); |
| const __m128i vsb23 = _mm_cmpgt_epi8(_mm_setzero_si128(), vb23); |
| const __m128i vxb2 = _mm_unpacklo_epi8(vb23, vsb23); |
| const __m128i vxb3 = _mm_unpackhi_epi8(vb23, vsb23); |
| |
| vacc0x2 = _mm_maddd_epi16(vxa0, vxb2, vacc0x2); |
| vacc0x3 = _mm_maddd_epi16(vxa0, vxb3, vacc0x3); |
| vacc1x2 = _mm_maddd_epi16(vxa1, vxb2, vacc1x2); |
| vacc1x3 = _mm_maddd_epi16(vxa1, vxb3, vacc1x3); |
| |
| w = (const void*) ((uintptr_t) w + 32); |
| k += 8 * sizeof(int8_t); |
| } |
| p -= 2 * sizeof(void*); |
| } while (p != 0); |
| |
| const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1); |
| const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3); |
| const __m128i vacc1x01 = _mm_hadd_epi32(vacc1x0, vacc1x1); |
| const __m128i vacc1x23 = _mm_hadd_epi32(vacc1x2, vacc1x3); |
| |
| __m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23); |
| __m128i vacc1x0123 = _mm_hadd_epi32(vacc1x01, vacc1x23); |
| |
| const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier); |
| const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding); |
| |
| const __m128i vacc0x1133 = _mm_shuffle_epi32(vacc0x0123, _MM_SHUFFLE(3, 3, 1, 1)); |
| const __m128i vacc1x1133 = _mm_shuffle_epi32(vacc1x0123, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| const __m128i vprod0x02 = _mm_add_epi64(_mm_mul_epi32(vacc0x0123, vmultiplier), vrounding); |
| const __m128i vprod1x02 = _mm_add_epi64(_mm_mul_epi32(vacc1x0123, vmultiplier), vrounding); |
| |
| const __m128i vprod0x13 = _mm_add_epi64(_mm_mul_epi32(vacc0x1133, vmultiplier), vrounding); |
| const __m128i vprod1x13 = _mm_add_epi64(_mm_mul_epi32(vacc1x1133, vmultiplier), vrounding); |
| |
| const __m128i vq31prod0x02 = _mm_srli_epi64(vprod0x02, 31); |
| const __m128i vq31prod0x13 = _mm_add_epi64(vprod0x13, vprod0x13); |
| const __m128i vq31prod1x02 = _mm_srli_epi64(vprod1x02, 31); |
| const __m128i vq31prod1x13 = _mm_add_epi64(vprod1x13, vprod1x13); |
| |
| const __m128i vq31prod0x0123 = _mm_blend_epi16(vq31prod0x02, vq31prod0x13, 0xCC); |
| const __m128i vq31prod1x0123 = _mm_blend_epi16(vq31prod1x02, vq31prod1x13, 0xCC); |
| |
| const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); |
| const __m128i vrem0x0123 = |
| _mm_add_epi32(_mm_and_si128(vq31prod0x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod0x0123)); |
| const __m128i vrem1x0123 = |
| _mm_add_epi32(_mm_and_si128(vq31prod1x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod1x0123)); |
| |
| const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); |
| const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); |
| vacc0x0123 = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod0x0123, vshift), _mm_cmpgt_epi32(vrem0x0123, vremainder_threshold)); |
| vacc1x0123 = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod1x0123, vshift), _mm_cmpgt_epi32(vrem1x0123, vremainder_threshold)); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); |
| __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point); |
| |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); |
| const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); |
| vacc01x0123 = _mm_min_epi16(_mm_max_epi16(vacc01x0123, voutput_min), voutput_max); |
| |
| __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123); |
| |
| if (nc >= 4) { |
| *((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1); |
| c1 = (int8_t*) ((uintptr_t) c1 + cn_stride); |
| *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout); |
| c0 = (int8_t*) ((uintptr_t) c0 + cn_stride); |
| |
| a = (const int8_t**restrict) ((uintptr_t) a - ks); |
| |
| nc -= 4; |
| } else { |
| if (nc & 2) { |
| *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2); |
| c1 += 2; |
| *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0); |
| c0 += 2; |
| vout = _mm_srli_epi32(vout, 16); |
| } |
| if (nc & 1) { |
| *((int8_t*) c1) = (int8_t) _mm_extract_epi8(vout, 4); |
| *((int8_t*) c0) = (int8_t) _mm_extract_epi8(vout, 0); |
| } |
| |
| nc = 0; |
| } |
| } while (nc != 0); |
| } |