| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/requantization.h> |
| |
| |
| class VAddMicrokernelTester { |
| public: |
| inline VAddMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline VAddMicrokernelTester& inplace_a(bool inplace_a) { |
| this->inplace_a_ = inplace_a; |
| return *this; |
| } |
| |
| inline bool inplace_a() const { |
| return this->inplace_a_; |
| } |
| |
| inline VAddMicrokernelTester& inplace_b(bool inplace_b) { |
| this->inplace_b_ = inplace_b; |
| return *this; |
| } |
| |
| inline bool inplace_b() const { |
| return this->inplace_b_; |
| } |
| |
| inline VAddMicrokernelTester& a_scale(float a_scale) { |
| assert(a_scale > 0.0f); |
| assert(std::isnormal(a_scale)); |
| this->a_scale_ = a_scale; |
| return *this; |
| } |
| |
| inline float a_scale() const { |
| return this->a_scale_; |
| } |
| |
| inline VAddMicrokernelTester& a_zero_point(uint8_t a_zero_point) { |
| this->a_zero_point_ = a_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t a_zero_point() const { |
| return this->a_zero_point_; |
| } |
| |
| inline VAddMicrokernelTester& b_scale(float b_scale) { |
| assert(b_scale > 0.0f); |
| assert(std::isnormal(b_scale)); |
| this->b_scale_ = b_scale; |
| return *this; |
| } |
| |
| inline float b_scale() const { |
| return this->b_scale_; |
| } |
| |
| inline VAddMicrokernelTester& b_zero_point(uint8_t b_zero_point) { |
| this->b_zero_point_ = b_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t b_zero_point() const { |
| return this->b_zero_point_; |
| } |
| |
| inline VAddMicrokernelTester& y_scale(float y_scale) { |
| assert(y_scale > 0.0f); |
| assert(std::isnormal(y_scale)); |
| this->y_scale_ = y_scale; |
| return *this; |
| } |
| |
| inline float y_scale() const { |
| return this->y_scale_; |
| } |
| |
| inline VAddMicrokernelTester& y_zero_point(uint8_t y_zero_point) { |
| this->y_zero_point_ = y_zero_point; |
| return *this; |
| } |
| |
| inline uint8_t y_zero_point() const { |
| return this->y_zero_point_; |
| } |
| |
| inline VAddMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline VAddMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline VAddMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_qu8_vaddsub_minmax_ukernel_function vadd_minmax, xnn_init_qu8_addsub_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng); |
| |
| std::vector<uint8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0)); |
| std::vector<float> y_fp(batch_size()); |
| std::vector<uint8_t> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(u8rng)); |
| std::generate(b.begin(), b.end(), std::ref(u8rng)); |
| if (inplace_a() || inplace_b()) { |
| std::generate(y.begin(), y.end(), std::ref(u8rng)); |
| } else { |
| std::fill(y.begin(), y.end(), 0xA5); |
| } |
| const uint8_t* a_data = inplace_a() ? y.data() : a.data(); |
| const uint8_t* b_data = inplace_b() ? y.data() : b.data(); |
| |
| // Prepare parameters. |
| xnn_qu8_addsub_minmax_params quantization_params; |
| init_params( |
| &quantization_params, |
| a_zero_point(), b_zero_point(), y_zero_point(), |
| a_scale() / y_scale(), b_scale() / y_scale(), |
| qmin(), qmax()); |
| xnn_qu8_addsub_minmax_params scalar_quantization_params; |
| xnn_init_qu8_add_minmax_scalar_params( |
| &scalar_quantization_params, |
| a_zero_point(), b_zero_point(), y_zero_point(), |
| a_scale() / y_scale(), b_scale() / y_scale(), |
| qmin(), qmax()); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_fp[i] = float(y_zero_point()) + |
| float(int32_t(a_data[i]) - int32_t(a_zero_point())) * (a_scale() / y_scale()) + |
| float(int32_t(b_data[i]) - int32_t(b_zero_point())) * (b_scale() / y_scale()); |
| y_fp[i] = std::min<float>(y_fp[i], float(qmax())); |
| y_fp[i] = std::max<float>(y_fp[i], float(qmin())); |
| y_ref[i] = xnn_qu8_quantize_add(a_data[i], b_data[i], scalar_quantization_params); |
| } |
| |
| // Call optimized micro-kernel. |
| vadd_minmax(batch_size(), a_data, b_data, y.data(), &quantization_params); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_LE(uint32_t(y[i]), uint32_t(qmax())) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_GE(uint32_t(y[i]), uint32_t(qmin())) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i])) |
| << "at element " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_qs8_vaddsub_minmax_ukernel_function vadd_minmax, xnn_init_qs8_addsub_minmax_params_fn init_params) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), rng); |
| |
| std::vector<int8_t> a(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> b(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(int8_t) : 0)); |
| std::vector<float> y_fp(batch_size()); |
| std::vector<int8_t> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(a.begin(), a.end(), std::ref(i8rng)); |
| std::generate(b.begin(), b.end(), std::ref(i8rng)); |
| if (inplace_a() || inplace_b()) { |
| std::generate(y.begin(), y.end(), std::ref(i8rng)); |
| } else { |
| std::fill(y.begin(), y.end(), 0xA5); |
| } |
| const int8_t* a_data = inplace_a() ? y.data() : a.data(); |
| const int8_t* b_data = inplace_b() ? y.data() : b.data(); |
| |
| // Prepare parameters. |
| xnn_qs8_addsub_minmax_params quantization_params; |
| init_params( |
| &quantization_params, |
| int8_t(a_zero_point() - 0x80), int8_t(b_zero_point() - 0x80), int8_t(y_zero_point() - 0x80), |
| a_scale() / y_scale(), b_scale() / y_scale(), |
| int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| xnn_qs8_addsub_minmax_params scalar_quantization_params; |
| xnn_init_qs8_add_minmax_scalar_params( |
| &scalar_quantization_params, |
| int8_t(a_zero_point() - 0x80), int8_t(b_zero_point() - 0x80), int8_t(y_zero_point() - 0x80), |
| a_scale() / y_scale(), b_scale() / y_scale(), |
| int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_fp[i] = float(int32_t(y_zero_point() - 0x80)) + |
| float(int32_t(a_data[i]) - int32_t(a_zero_point() - 0x80)) * (a_scale() / y_scale()) + |
| float(int32_t(b_data[i]) - int32_t(b_zero_point() - 0x80)) * (b_scale() / y_scale()); |
| y_fp[i] = std::min<float>(y_fp[i], float(int32_t(qmax() - 0x80))); |
| y_fp[i] = std::max<float>(y_fp[i], float(int32_t(qmin() - 0x80))); |
| y_ref[i] = xnn_qs8_quantize_add(a_data[i], b_data[i], scalar_quantization_params); |
| } |
| |
| // Call optimized micro-kernel. |
| vadd_minmax(batch_size(), a_data, b_data, y.data(), &quantization_params); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_LE(int32_t(y[i]), int32_t(qmax() - 0x80)) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_GE(int32_t(y[i]), int32_t(qmin() - 0x80)) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_EQ(int32_t(y_ref[i]), int32_t(y[i])) |
| << "at element " << i << " / " << batch_size(); |
| ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.6f) |
| << "at element " << i << " / " << batch_size(); |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| bool inplace_a_{false}; |
| bool inplace_b_{false}; |
| float a_scale_{0.75f}; |
| float b_scale_{1.25f}; |
| float y_scale_{0.96875f}; |
| uint8_t a_zero_point_{121}; |
| uint8_t b_zero_point_{127}; |
| uint8_t y_zero_point_{133}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |