| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iomanip> |
| #include <ios> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/isa-checks.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| constexpr int kBlockSize = 1024; |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(CVT__SSE2, positive_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, negative_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, positive_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, negative_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, positive_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, negative_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, positive_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE2, negative_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE2, positive_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, negative_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, positive_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE2, negative_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE2, positive_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE2, negative_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(CVT__SSE41, positive_normal) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, negative_normal) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, positive_subnormal) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, negative_subnormal) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, positive_underflow) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, negative_underflow) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, positive_zero) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE41, negative_zero) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE41, positive_overflow) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, negative_overflow) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, positive_infinity) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE41, negative_infinity) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SSE41, positive_nan) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SSE41, negative_nan) { |
| TEST_REQUIRES_X86_SSE41; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(CVT__F16C, positive_normal) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, negative_normal) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, positive_subnormal) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, negative_subnormal) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, positive_underflow) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, negative_underflow) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, positive_zero) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__F16C, negative_zero) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__F16C, positive_overflow) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, negative_overflow) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, positive_infinity) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__F16C, negative_infinity) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__F16C, positive_nan) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__F16C, negative_nan) { |
| TEST_REQUIRES_X86_F16C; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| TEST(CVT__NEON, positive_normal) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_normal) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, positive_subnormal) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_subnormal) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, positive_underflow) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_underflow) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, positive_zero) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEON, negative_zero) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEON, positive_overflow) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_overflow) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, positive_infinity) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEON, negative_infinity) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEON, positive_nan) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_nan) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| TEST(CVT__NEONFP16, positive_normal) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, negative_normal) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, positive_subnormal) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, negative_subnormal) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, positive_underflow) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, negative_underflow) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, positive_zero) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEONFP16, negative_zero) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEONFP16, positive_overflow) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, negative_overflow) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, positive_infinity) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEONFP16, negative_infinity) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__NEONFP16, positive_nan) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__NEONFP16, negative_nan) { |
| TEST_REQUIRES_ARM_NEON_FP16; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| #if XNN_ARCH_WASMSIMD |
| TEST(CVT__WASMSIMD, positive_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, positive_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, positive_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, positive_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__WASMSIMD, negative_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__WASMSIMD, positive_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, positive_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__WASMSIMD, negative_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__WASMSIMD, positive_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| #endif // XNN_ARCH_WASMSIMD |
| |
| TEST(CVT__SCALAR_BITCAST, positive_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, positive_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, positive_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, positive_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, positive_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, positive_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, positive_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_BITCAST, negative_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_subnormal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_underflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x0000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x8000); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(n + i); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[i]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0x7C00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_infinity) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| const uint16_t reference_output = UINT16_C(0xFC00); |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
| } |
| |
| TEST(CVT__SCALAR_FABSF, positive_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |
| |
| TEST(CVT__SCALAR_FABSF, negative_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
| } |
| xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
| } |
| } |
| } |