| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/allocator.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| enum xnn_status xnn_create_hardswish_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* hardswish_op_out) |
| { |
| xnn_operator_t hardswish_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to create HardSwish operator: XNNPACK is not initialized"); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (channels == 0) { |
| xnn_log_error( |
| "failed to create HardSwish operator with %zu channels: number of channels must be non-zero", channels); |
| goto error; |
| } |
| |
| if (input_stride < channels) { |
| xnn_log_error( |
| "failed to create HardSwish operator with input element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| input_stride, channels); |
| goto error; |
| } |
| |
| if (output_stride < channels) { |
| xnn_log_error( |
| "failed to create HardSwish operator with output element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| output_stride, channels); |
| goto error; |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| hardswish_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); |
| if (hardswish_op == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for xnn_operator structure", sizeof(struct xnn_operator)); |
| goto error; |
| } |
| |
| hardswish_op->channels = channels; |
| hardswish_op->input_pixel_stride = input_stride; |
| hardswish_op->output_pixel_stride = output_stride; |
| hardswish_op->f32_hswish_params = xnn_init_f32_hswish_params(); |
| |
| hardswish_op->type = xnn_operator_type_hardswish_nc_f32; |
| hardswish_op->ukernel.type = xnn_ukernel_type_hswish; |
| |
| hardswish_op->state = xnn_run_state_invalid; |
| |
| *hardswish_op_out = hardswish_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(hardswish_op); |
| return status; |
| } |
| |
| enum xnn_status xnn_setup_hardswish_nc_f32( |
| xnn_operator_t hardswish_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool) |
| { |
| if (hardswish_op->type != xnn_operator_type_hardswish_nc_f32) { |
| xnn_log_error("failed to setup HardSwish (F32) operator: operator type mismatch"); |
| return xnn_status_invalid_parameter; |
| } |
| hardswish_op->state = xnn_run_state_invalid; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to setup HardSwish operator: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (batch_size == 0) { |
| hardswish_op->state = xnn_run_state_skip; |
| return xnn_status_success; |
| } |
| |
| const size_t channels = hardswish_op->channels; |
| const size_t input_stride = hardswish_op->input_pixel_stride; |
| const size_t output_stride = hardswish_op->output_pixel_stride; |
| if ((((input_stride ^ channels) | (output_stride ^ channels)) == 0) || batch_size == 1) { |
| const size_t block_size = 4096; |
| hardswish_op->context.univector_contiguous = (struct univector_contiguous_context) { |
| .x = input, |
| .x_stride = input_stride * sizeof(float), |
| .y = output, |
| .y_stride = output_stride * sizeof(float), |
| .ukernel = xnn_params.f32.hswish, |
| .params.f32_hswish = hardswish_op->f32_hswish_params, |
| }; |
| hardswish_op->compute.type = xnn_parallelization_type_1d_tile_1d; |
| hardswish_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_contiguous; |
| hardswish_op->compute.range[0] = batch_size * channels * sizeof(float); |
| hardswish_op->compute.tile[0] = block_size; |
| } else { |
| hardswish_op->context.univector_strided = (struct univector_strided_context) { |
| .n = channels * sizeof(float), |
| .x = input, |
| .x_stride = input_stride * sizeof(float), |
| .y = output, |
| .y_stride = output_stride * sizeof(float), |
| .ukernel = xnn_params.f32.hswish, |
| .params.f32_hswish = hardswish_op->f32_hswish_params, |
| }; |
| hardswish_op->compute.type = xnn_parallelization_type_1d_tile_1d; |
| hardswish_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_strided; |
| hardswish_op->compute.range[0] = batch_size; |
| hardswish_op->compute.tile[0] = 1; |
| } |
| hardswish_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |