blob: c3f4b6ce75b6848171c0294d52694c0f7beac055 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/operator.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
enum xnn_status xnn_create_hardswish_nc_f32(
size_t channels,
size_t input_stride,
size_t output_stride,
uint32_t flags,
xnn_operator_t* hardswish_op_out)
{
xnn_operator_t hardswish_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create HardSwish operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (channels == 0) {
xnn_log_error(
"failed to create HardSwish operator with %zu channels: number of channels must be non-zero", channels);
goto error;
}
if (input_stride < channels) {
xnn_log_error(
"failed to create HardSwish operator with input element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
input_stride, channels);
goto error;
}
if (output_stride < channels) {
xnn_log_error(
"failed to create HardSwish operator with output element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
output_stride, channels);
goto error;
}
status = xnn_status_out_of_memory;
hardswish_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (hardswish_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for xnn_operator structure", sizeof(struct xnn_operator));
goto error;
}
hardswish_op->channels = channels;
hardswish_op->input_pixel_stride = input_stride;
hardswish_op->output_pixel_stride = output_stride;
hardswish_op->f32_hswish_params = xnn_init_f32_hswish_params();
hardswish_op->type = xnn_operator_type_hardswish_nc_f32;
hardswish_op->ukernel.type = xnn_ukernel_type_hswish;
hardswish_op->state = xnn_run_state_invalid;
*hardswish_op_out = hardswish_op;
return xnn_status_success;
error:
xnn_delete_operator(hardswish_op);
return status;
}
enum xnn_status xnn_setup_hardswish_nc_f32(
xnn_operator_t hardswish_op,
size_t batch_size,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (hardswish_op->type != xnn_operator_type_hardswish_nc_f32) {
xnn_log_error("failed to setup HardSwish (F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
hardswish_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup HardSwish operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (batch_size == 0) {
hardswish_op->state = xnn_run_state_skip;
return xnn_status_success;
}
const size_t channels = hardswish_op->channels;
const size_t input_stride = hardswish_op->input_pixel_stride;
const size_t output_stride = hardswish_op->output_pixel_stride;
if ((((input_stride ^ channels) | (output_stride ^ channels)) == 0) || batch_size == 1) {
const size_t block_size = 4096;
hardswish_op->context.univector_contiguous = (struct univector_contiguous_context) {
.x = input,
.x_stride = input_stride * sizeof(float),
.y = output,
.y_stride = output_stride * sizeof(float),
.ukernel = xnn_params.f32.hswish,
.params.f32_hswish = hardswish_op->f32_hswish_params,
};
hardswish_op->compute.type = xnn_parallelization_type_1d_tile_1d;
hardswish_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_contiguous;
hardswish_op->compute.range[0] = batch_size * channels * sizeof(float);
hardswish_op->compute.tile[0] = block_size;
} else {
hardswish_op->context.univector_strided = (struct univector_strided_context) {
.n = channels * sizeof(float),
.x = input,
.x_stride = input_stride * sizeof(float),
.y = output,
.y_stride = output_stride * sizeof(float),
.ukernel = xnn_params.f32.hswish,
.params.f32_hswish = hardswish_op->f32_hswish_params,
};
hardswish_op->compute.type = xnn_parallelization_type_1d_tile_1d;
hardswish_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_strided;
hardswish_op->compute.range[0] = batch_size;
hardswish_op->compute.tile[0] = 1;
}
hardswish_op->state = xnn_run_state_ready;
return xnn_status_success;
}