| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert SSE in [2, 3, 4] |
| $assert not XOP or AVX |
| $assert not AVX or SSE == 4 |
| $assert REQUANTIZATION in ["GEMMLOWP", "FP32"] |
| $assert DATATYPE in ["QC8", "QS8", "QU8"] |
| $assert DATATYPE != "QC8" or REQUANTIZATION == "FP32" |
| $assert SSE != 3 or REQUANTIZATION != "FP32" |
| $assert VARIANT in ["LD64", "LD128"] |
| $assert MR <= 4 |
| #include <assert.h> |
| |
| $if XOP: |
| #if defined(__GNUC__) || defined(__clang__) |
| #include <x86intrin.h> |
| #else |
| #include <immintrin.h> |
| #include <ammintrin.h> |
| #endif |
| $else: |
| $SSE_HEADER = {2: "emmintrin.h", 3: "tmmintrin.h", 4: "smmintrin.h"}[SSE] |
| #include <${SSE_HEADER}> |
| |
| #include <xnnpack/igemm.h> |
| #include <xnnpack/math.h> |
| |
| |
| $PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower() |
| $PARAMS_STRUCT = ("" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_") + ("sse4" if SSE >= 4 and DATATYPE != "QU8" else "sse2") |
| $XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t" |
| $ISA = "xop" if XOP else "avx" if AVX else {2: "sse2", 3: "ssse3", 4: "sse41"}[SSE] |
| void xnn_${DATATYPE.lower()}_igemm_minmax_${REQUANTIZATION.lower()}_ukernel_${MR}x4c2__${ISA}_${VARIANT.lower()}( |
| size_t mr, |
| size_t nc, |
| size_t kc, |
| size_t ks, |
| const ${XINT8_T}** restrict a, |
| const void* restrict w, |
| ${XINT8_T}* restrict c, |
| size_t cm_stride, |
| size_t cn_stride, |
| size_t a_offset, |
| const ${XINT8_T}* zero, |
| const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN |
| { |
| assert(mr != 0); |
| assert(mr <= ${MR}); |
| assert(nc != 0); |
| assert(kc != 0); |
| assert(ks != 0); |
| assert(ks % (${MR} * sizeof(void*)) == 0); |
| assert(a_offset % sizeof(${XINT8_T}) == 0); |
| assert(a != NULL); |
| assert(w != NULL); |
| assert(c != NULL); |
| |
| kc = round_up_po2(kc, 2); |
| ${XINT8_T}* c0 = c; |
| $for M in range(1, MR): |
| ${XINT8_T}* c${M} = (${XINT8_T}*) ((uintptr_t) c${M-1} + cm_stride); |
| $if M % 2 == 0: |
| if XNN_UNPREDICTABLE(mr <= ${M}) { |
| c${M} = c${M-1}; |
| } |
| $elif M + 1 == MR: |
| if XNN_UNPREDICTABLE(mr != ${M+1}) { |
| c${M} = c${M-1}; |
| } |
| $else: |
| if XNN_UNPREDICTABLE(mr < ${M+1}) { |
| c${M} = c${M-1}; |
| } |
| |
| do { |
| __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w); |
| $for M in range(1, MR): |
| __m128i vacc${M}x0123 = vacc0x0123; |
| w = (const void*) ((const int32_t*) w + 4); |
| |
| size_t p = ks; |
| do { |
| $for M in range(MR): |
| const ${XINT8_T}* restrict a${M} = a[${M}]; |
| if XNN_UNPREDICTABLE(a${M} != zero) { |
| a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} + a_offset); |
| } |
| a += ${MR}; |
| |
| size_t k = kc; |
| $if DATATYPE == "QU8": |
| const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.kernel_zero_point); |
| $if SSE < 4 or VARIANT == "LD128": |
| const __m128i vzero = _mm_setzero_si128(); |
| while (k >= 8 * sizeof(${XINT8_T})) { |
| $for M in range(MR): |
| const __m128i va${M} = _mm_loadl_epi64((const __m128i*) a${M}); |
| $if DATATYPE == "QU8": |
| $if SSE == 4: |
| const __m128i vxa${M} = _mm_cvtepu8_epi16(va${M}); |
| $else: |
| const __m128i vxa${M} = _mm_unpacklo_epi8(va${M}, vzero); |
| $else: |
| $if SSE == 4: |
| const __m128i vxa${M} = _mm_cvtepi8_epi16(va${M}); |
| $else: |
| const __m128i vxa${M} = _mm_srai_epi16(_mm_unpacklo_epi8(va${M}, va${M}), 8); |
| a${M} += 8; |
| |
| $if VARIANT == "LD128": |
| $for K in range(0, 4, 2): |
| $if K == 0: |
| const __m128i vb${K}${K+1} = _mm_loadu_si128((const __m128i*) w); |
| $else: |
| const __m128i vb${K}${K+1} = _mm_loadu_si128((const __m128i*) ((const ${XINT8_T}*) w + ${K * 8})); |
| $if DATATYPE == "QU8": |
| const __m128i vxb${K} = _mm_sub_epi16(_mm_unpacklo_epi8(vb${K}${K+1}, vzero), vb_zero_point); |
| const __m128i vxb${K+1} = _mm_sub_epi16(_mm_unpackhi_epi8(vb${K}${K+1}, vzero), vb_zero_point); |
| $elif SSE == 4: |
| const __m128i vxb${K} = _mm_cvtepi8_epi16(vb${K}${K+1}); |
| const __m128i vxb${K+1} = _mm_srai_epi16(_mm_unpackhi_epi8(vb${K}${K+1}, vb${K}${K+1}), 8); |
| $else: |
| const __m128i vsb${K}${K+1} = _mm_cmpgt_epi8(_mm_setzero_si128(), vb${K}${K+1}); |
| const __m128i vxb${K} = _mm_unpacklo_epi8(vb${K}${K+1}, vsb${K}${K+1}); |
| const __m128i vxb${K+1} = _mm_unpackhi_epi8(vb${K}${K+1}, vsb${K}${K+1}); |
| |
| $for M in range(MR): |
| $if XOP: |
| vacc${M}x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(${K}, ${K}, ${K}, ${K})), vxb${K}, vacc${M}x0123); |
| $else: |
| vacc${M}x0123 = _mm_add_epi32(vacc${M}x0123, |
| _mm_madd_epi16(_mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(${K}, ${K}, ${K}, ${K})), vxb${K})); |
| |
| $for M in range(MR): |
| $if XOP: |
| vacc${M}x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(${K+1}, ${K+1}, ${K+1}, ${K+1})), vxb${K+1}, vacc${M}x0123); |
| $else: |
| vacc${M}x0123 = _mm_add_epi32(vacc${M}x0123, |
| _mm_madd_epi16(_mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(${K+1}, ${K+1}, ${K+1}, ${K+1})), vxb${K+1})); |
| $else: |
| $for K in range(4): |
| $if K == 0: |
| const __m128i vb${K} = _mm_loadl_epi64((const __m128i*) w); |
| $else: |
| const __m128i vb${K} = _mm_loadl_epi64((const __m128i*) ((const ${XINT8_T}*) w + ${K * 8})); |
| $if DATATYPE == "QU8": |
| $if SSE == 4: |
| const __m128i vxb${K} = _mm_sub_epi16(_mm_cvtepu8_epi16(vb${K}), vb_zero_point); |
| $else: |
| const __m128i vxb${K} = _mm_sub_epi16(_mm_unpacklo_epi8(vb${K}, vzero), vb_zero_point); |
| $else: |
| $if SSE == 4: |
| const __m128i vxb${K} = _mm_cvtepi8_epi16(vb${K}); |
| $else: |
| const __m128i vxb${K} = _mm_srai_epi16(_mm_unpacklo_epi8(vb${K}, vb${K}), 8); |
| |
| $for M in range(MR): |
| $if XOP: |
| vacc${M}x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(${K}, ${K}, ${K}, ${K})), vxb${K}, vacc${M}x0123); |
| $else: |
| vacc${M}x0123 = _mm_add_epi32(vacc${M}x0123, |
| _mm_madd_epi16(_mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(${K}, ${K}, ${K}, ${K})), vxb${K})); |
| |
| w = (const void*) ((const ${XINT8_T}*) w + 32); |
| k -= 8 * sizeof(${XINT8_T}); |
| } |
| if (k != 0) { |
| $for M in range(MR): |
| const __m128i va${M} = _mm_loadl_epi64((const __m128i*) a${M}); |
| $if DATATYPE == "QU8": |
| $if SSE == 4: |
| const __m128i vxa${M} = _mm_cvtepu8_epi16(va${M}); |
| $else: |
| const __m128i vxa${M} = _mm_unpacklo_epi8(va${M}, vzero); |
| $else: |
| $if SSE == 4: |
| const __m128i vxa${M} = _mm_cvtepi8_epi16(va${M}); |
| $else: |
| const __m128i vxa${M} = _mm_srai_epi16(_mm_unpacklo_epi8(va${M}, va${M}), 8); |
| a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} + k); |
| |
| const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w); |
| w = (const void*) ((const ${XINT8_T}*) w + 8); |
| $if DATATYPE == "QU8": |
| $if SSE == 4: |
| const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point); |
| $else: |
| const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb0, vzero), vb_zero_point); |
| $else: |
| $if SSE == 4: |
| const __m128i vxb0 = _mm_cvtepi8_epi16(vb0); |
| $else: |
| const __m128i vxb0 = _mm_srai_epi16(_mm_unpacklo_epi8(vb0, vb0), 8); |
| |
| $for M in range(MR): |
| $if XOP: |
| vacc${M}x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc${M}x0123); |
| $else: |
| vacc${M}x0123 = _mm_add_epi32(vacc${M}x0123, |
| _mm_madd_epi16(_mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(0, 0, 0, 0)), vxb0)); |
| |
| if (k > 2 * sizeof(${XINT8_T})) { |
| const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w); |
| w = (const void*) ((const ${XINT8_T}*) w + 8); |
| $if DATATYPE == "QU8": |
| $if SSE == 4: |
| const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point); |
| $else: |
| const __m128i vxb1 = _mm_sub_epi16(_mm_unpacklo_epi8(vb1, vzero), vb_zero_point); |
| $else: |
| $if SSE == 4: |
| const __m128i vxb1 = _mm_cvtepi8_epi16(vb1); |
| $else: |
| const __m128i vxb1 = _mm_srai_epi16(_mm_unpacklo_epi8(vb1, vb1), 8); |
| |
| $for M in range(MR): |
| $if XOP: |
| vacc${M}x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc${M}x0123); |
| $else: |
| vacc${M}x0123 = _mm_add_epi32(vacc${M}x0123, |
| _mm_madd_epi16(_mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(1, 1, 1, 1)), vxb1)); |
| |
| if (k > 4 * sizeof(${XINT8_T})) { |
| const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w); |
| w = (const void*) ((const ${XINT8_T}*) w + 8); |
| $if DATATYPE == "QU8": |
| $if SSE == 4: |
| const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point); |
| $else: |
| const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb2, vzero), vb_zero_point); |
| $else: |
| $if SSE == 4: |
| const __m128i vxb2 = _mm_cvtepi8_epi16(vb2); |
| $else: |
| const __m128i vxb2 = _mm_srai_epi16(_mm_unpacklo_epi8(vb2, vb2), 8); |
| |
| $for M in range(MR): |
| $if XOP: |
| vacc${M}x0123 = _mm_maddd_epi16( |
| _mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc${M}x0123); |
| $else: |
| vacc${M}x0123 = _mm_add_epi32(vacc${M}x0123, |
| _mm_madd_epi16(_mm_shuffle_epi32(vxa${M}, _MM_SHUFFLE(2, 2, 2, 2)), vxb2)); |
| } |
| } |
| } |
| p -= ${MR} * sizeof(void*); |
| } while (p != 0); |
| |
| $if REQUANTIZATION == "GEMMLOWP": |
| const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.multiplier); |
| const __m128i vrounding = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.rounding); |
| |
| $if SSE == 4: |
| $for M in range(MR): |
| const __m128i vacc${M}x1133 = _mm_shuffle_epi32(vacc${M}x0123, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| $for M in range(MR): |
| const __m128i vprod${M}x02 = _mm_add_epi64(_mm_mul_epi32(vacc${M}x0123, vmultiplier), vrounding); |
| |
| $for M in range(MR): |
| const __m128i vprod${M}x13 = _mm_add_epi64(_mm_mul_epi32(vacc${M}x1133, vmultiplier), vrounding); |
| |
| $for M in range(MR): |
| const __m128i vq31prod${M}x02 = _mm_srli_epi64(vprod${M}x02, 31); |
| const __m128i vq31prod${M}x13 = _mm_add_epi64(vprod${M}x13, vprod${M}x13); |
| |
| $for M in range(MR): |
| const __m128i vq31prod${M}x0123 = _mm_blend_epi16(vq31prod${M}x02, vq31prod${M}x13, 0xCC); |
| $else: |
| $for M in range(MR): |
| const __m128i vnmask${M}x0123 = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${M}x0123); |
| |
| $for M in range(MR): |
| $if SSE >= 3: |
| const __m128i vabsacc${M}x0123 = _mm_abs_epi32(vacc${M}x0123); |
| $else: |
| const __m128i vabsacc${M}x0123 = _mm_sub_epi32(_mm_xor_si128(vacc${M}x0123, vnmask${M}x0123), vnmask${M}x0123); |
| |
| $for M in range(MR): |
| const __m128i vabsacc${M}x1133 = _mm_shuffle_epi32(vabsacc${M}x0123, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| $for M in range(MR): |
| const __m128i vabsprod${M}x02 = _mm_mul_epu32(vabsacc${M}x0123, vmultiplier); |
| |
| $for M in range(MR): |
| const __m128i vnmask${M}x02 = _mm_shuffle_epi32(vnmask${M}x0123, _MM_SHUFFLE(2, 2, 0, 0)); |
| |
| $for M in range(MR): |
| const __m128i vprod${M}x02 = _mm_sub_epi64(_mm_xor_si128(vabsprod${M}x02, vnmask${M}x02), vnmask${M}x02); |
| |
| $for M in range(MR): |
| const __m128i vq31prod${M}x02 = _mm_srli_epi64(_mm_add_epi64(vprod${M}x02, vrounding), 31); |
| |
| $for M in range(MR): |
| const __m128i vabsprod${M}x13 = _mm_mul_epu32(vabsacc${M}x1133, vmultiplier); |
| |
| $for M in range(MR): |
| const __m128i vnmask${M}x13 = _mm_shuffle_epi32(vnmask${M}x0123, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| $for M in range(MR): |
| const __m128i vprod${M}x13 = _mm_sub_epi64(_mm_xor_si128(vabsprod${M}x13, vnmask${M}x13), vnmask${M}x13); |
| |
| $for M in range(MR): |
| const __m128i vq31prod${M}x13 = _mm_srli_epi64(_mm_add_epi64(vprod${M}x13, vrounding), 31); |
| |
| $for M in range(MR): |
| const __m128i vq31prod${M}x0213 = _mm_castps_si128(_mm_shuffle_ps( |
| _mm_castsi128_ps(vq31prod${M}x02), _mm_castsi128_ps(vq31prod${M}x13), _MM_SHUFFLE(2, 0, 2, 0))); |
| |
| $for M in range(MR): |
| const __m128i vq31prod${M}x0123 = _mm_shuffle_epi32(vq31prod${M}x0213, _MM_SHUFFLE(3, 1, 2, 0)); |
| |
| const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.remainder_mask); |
| $for M in range(MR): |
| const __m128i vrem${M}x0123 = |
| _mm_add_epi32(_mm_and_si128(vq31prod${M}x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${M}x0123)); |
| |
| const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.remainder_threshold); |
| $if M > 1: |
| const __m128i vshift = _mm_loadl_epi64((const __m128i*) params->${PARAMS_STRUCT}.shift); |
| $else: |
| const __m128i vshift = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.shift); |
| $for M in range(MR): |
| vacc${M}x0123 = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod${M}x0123, vshift), _mm_cmpgt_epi32(vrem${M}x0123, vremainder_threshold)); |
| $elif REQUANTIZATION == "FP32": |
| $for M in range(MR): |
| __m128 vscaled${M}x0123 = _mm_cvtepi32_ps(vacc${M}x0123); |
| |
| $if DATATYPE == "QC8": |
| const __m128 vscale0123 = _mm_loadu_ps((const float*) w); |
| w = (const void*) ((const float*) w + 4); |
| $for M in range(MR): |
| vscaled${M}x0123 = _mm_mul_ps(vscaled${M}x0123, vscale0123); |
| $else: |
| const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale); |
| $for M in range(MR): |
| vscaled${M}x0123 = _mm_mul_ps(vscaled${M}x0123, vscale); |
| |
| $for M in range(MR): |
| vacc${M}x0123 = _mm_cvtps_epi32(vscaled${M}x0123); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point); |
| $for M in range(0, MR, 2): |
| __m128i vacc${M}${min(M+1, MR-1)}x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc${M}x0123, vacc${min(M+1, MR-1)}x0123), voutput_zero_point); |
| |
| $if DATATYPE == "QU8": |
| $if MR > 2: |
| __m128i vout = _mm_packus_epi16(vacc0${min(1, MR-1)}x0123, vacc${min(2, MR-1)}${min(3, MR-1)}x0123); |
| $else: |
| __m128i vout = _mm_packus_epi16(vacc0${min(1, MR-1)}x0123, vacc0${min(1, MR-1)}x0123); |
| |
| vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min)); |
| vout = _mm_min_epu8(vout, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max)); |
| $else: |
| $if SSE < 4: |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min); |
| const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max); |
| $for M in range(0, MR, 2): |
| vacc${M}${min(M+1, MR-1)}x0123 = _mm_min_epi16(_mm_max_epi16(vacc${M}${min(M+1, MR-1)}x0123, voutput_min), voutput_max); |
| |
| $if MR > 2: |
| __m128i vout = _mm_packs_epi16(vacc0${min(1, MR-1)}x0123, vacc${min(2, MR-1)}${min(3, MR-1)}x0123); |
| $else: |
| __m128i vout = _mm_packs_epi16(vacc0${min(1, MR-1)}x0123, vacc0${min(1, MR-1)}x0123); |
| |
| $if SSE == 4: |
| vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min)); |
| vout = _mm_min_epi8(vout, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max)); |
| |
| if (nc >= 4) { |
| $for M in reversed(range(1, MR)): |
| $if SSE == 4: |
| *((uint32_t*) c${M}) = (uint32_t) _mm_extract_epi32(vout, ${M}); |
| $else: |
| *((uint32_t*) c${M}) = (uint32_t) _mm_cvtsi128_si32(_mm_shuffle_epi32(vout, _MM_SHUFFLE(${M}, ${M}, ${M}, ${M}))); |
| c${M} = (${XINT8_T}*) ((uintptr_t) c${M} + cn_stride); |
| *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout); |
| c0 = (${XINT8_T}*) ((uintptr_t) c0 + cn_stride); |
| |
| a = (const ${XINT8_T}**restrict) ((uintptr_t) a - ks); |
| |
| nc -= 4; |
| } else { |
| if (nc & 2) { |
| $for M in reversed(range(MR)): |
| *((uint16_t*) c${M}) = (uint16_t) _mm_extract_epi16(vout, ${M * 2}); |
| c${M} += 2; |
| vout = _mm_srli_epi32(vout, 16); |
| } |
| if (nc & 1) { |
| $if SSE == 4: |
| $for M in reversed(range(MR)): |
| *c${M} = (${XINT8_T}) _mm_extract_epi8(vout, ${M * 4}); |
| $else: |
| $for M in reversed(range(1, MR)): |
| *c${M} = (${XINT8_T}) _mm_extract_epi16(vout, ${M * 2}); |
| *c0 = (${XINT8_T}) _mm_cvtsi128_si32(vout); |
| } |
| |
| nc = 0; |
| } |
| } while (nc != 0); |
| } |