blob: f1bbea746dd3356b5599a5925f229addb3c8354c [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/qs8-gemm/MRx4c8-sse.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <smmintrin.h>
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
void xnn_qu8_gemm_minmax_fp32_ukernel_2x4c8__avx_ld64(
size_t mr,
size_t nc,
size_t kc,
const uint8_t* restrict a,
size_t a_stride,
const void* restrict w,
uint8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(mr != 0);
assert(mr <= 2);
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(uint8_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
kc = round_up_po2(kc, 8);
const uint8_t* a0 = a;
uint8_t* c0 = c;
const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
if XNN_UNPREDICTABLE(mr != 2) {
a1 = a0;
c1 = c0;
}
do {
__m128i vacc0x0 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[0]);
__m128i vacc0x1 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[1]);
__m128i vacc0x2 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[2]);
__m128i vacc0x3 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[3]);
__m128i vacc1x0 = vacc0x0;
__m128i vacc1x1 = vacc0x1;
__m128i vacc1x2 = vacc0x2;
__m128i vacc1x3 = vacc0x3;
w = (const void*) ((const int32_t*) w + 4);
size_t k = 0;
const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
while (k < kc) {
const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
a0 += 8;
const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
const __m128i vxa1 = _mm_cvtepu8_epi16(va1);
a1 += 8;
const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point);
vacc0x0 = _mm_add_epi32(vacc0x0, _mm_madd_epi16(vxa0, vxb0));
vacc1x0 = _mm_add_epi32(vacc1x0, _mm_madd_epi16(vxa1, vxb0));
const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 8));
const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point);
vacc0x1 = _mm_add_epi32(vacc0x1, _mm_madd_epi16(vxa0, vxb1));
vacc1x1 = _mm_add_epi32(vacc1x1, _mm_madd_epi16(vxa1, vxb1));
const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 16));
const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point);
vacc0x2 = _mm_add_epi32(vacc0x2, _mm_madd_epi16(vxa0, vxb2));
vacc1x2 = _mm_add_epi32(vacc1x2, _mm_madd_epi16(vxa1, vxb2));
const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 24));
const __m128i vxb3 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb3), vb_zero_point);
vacc0x3 = _mm_add_epi32(vacc0x3, _mm_madd_epi16(vxa0, vxb3));
vacc1x3 = _mm_add_epi32(vacc1x3, _mm_madd_epi16(vxa1, vxb3));
w = (const void*) ((const uint8_t*) w + 32);
k += 8 * sizeof(uint8_t);
}
const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1);
const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3);
const __m128i vacc1x01 = _mm_hadd_epi32(vacc1x0, vacc1x1);
const __m128i vacc1x23 = _mm_hadd_epi32(vacc1x2, vacc1x3);
__m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23);
__m128i vacc1x0123 = _mm_hadd_epi32(vacc1x01, vacc1x23);
__m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
__m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
__m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
__m128i vout = _mm_packus_epi16(vacc01x0123, vacc01x0123);
vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
vout = _mm_min_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_max));
if (nc >= 4) {
*((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
*((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1);
c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
nc -= 4;
} else {
if (nc & 2) {
*((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
c0 += 2;
*((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
c1 += 2;
vout = _mm_srli_epi32(vout, 16);
}
if (nc & 1) {
*c0 = (uint8_t) _mm_extract_epi8(vout, 0);
*c1 = (uint8_t) _mm_extract_epi8(vout, 4);
}
nc = 0;
}
} while (nc != 0);
}