| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| // Table of exp2(k / 2048) values, k = 0..2047 |
| extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048]; |
| |
| void xnn_math_f32_sigmoid__neonfma_rr2_lut2048_p1_nr2fma( |
| size_t n, |
| const float* input, |
| float* output) |
| { |
| assert(n % (4 * sizeof(float)) == 0); |
| |
| const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f); |
| // The largest z for which sigmoidf(-z) is normalized. |
| // This number is also the largest z for which expf(-z) is normalized. |
| const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f); |
| const float32x4_t vminus_log2e_x2048 = vmovq_n_f32(-0x1.715476p11f); |
| const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.62E43p-12f); |
| const float32x4_t vln2_o2048_lo = vmovq_n_f32(-0x1.05C61p-40f); |
| const float32x4_t vone = vmovq_n_f32(1.0f); |
| |
| const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f); |
| |
| const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); |
| |
| for (; n != 0; n -= 4 * sizeof(float)) { |
| const float32x4_t vx = vld1q_f32(input); input += 4; |
| |
| // General structure of the algorithm: |
| // / exp(x) / (1 + exp(x)) if x <= 0 |
| // f[x] := |
| // \ 1 - f[-x] if x >= 0 |
| // |
| // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), |
| // then replace result with 1 - f[-z] if x >= 0. |
| const float32x4_t vz = vabsq_f32(vx); |
| |
| // Compute reduced argument n := round(-z * 2048 / log(2)). |
| // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing |
| // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. |
| // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e. |
| // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of |
| // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result |
| // for such inputs at the very end of the algorithm. |
| float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x2048); |
| |
| // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is |
| // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) = |
| // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps: |
| // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 11 low bits of n, as integer. Note that the |
| // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. |
| // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized |
| // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0, |
| // and thus the adjusted exponent is not lower than -126. |
| // |
| // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent). |
| const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12); |
| |
| // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048). |
| const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); |
| const uint64_t vidx01 = vgetq_lane_u64(vidx, 0); |
| const uint64_t vidx23 = vgetq_lane_u64(vidx, 1); |
| float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx01]); |
| float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx23]); |
| vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1); |
| vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1); |
| const float32x4_t vl = vcombine_f32(vl01, vl23); |
| // Adjust exponent of the value l fetched from the table to get the final s value. |
| const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); |
| |
| // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number. |
| vn = vsubq_f32(vn, vmagic_bias); |
| |
| // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048. |
| // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy. |
| float32x4_t vt = vfmaq_f32(vz, vn, vln2_o2048_hi); |
| vt = vfmaq_f32(vt, vn, vln2_o2048_lo); |
| |
| // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/4096, log(2)/4096]: |
| // P1(t) = 1 + t * c1 |
| const float32x4_t vp = vmulq_f32(vt, vc1); |
| |
| // Reconstruct the exp(-z) value: |
| // y = s * (1 + t * c1) |
| // = s + s * (t * c1)) |
| // = s + s * p |
| const float32x4_t vy = vfmaq_f32(vs, vs, vp); |
| |
| // Denominator of the sigmoid fraction: 1.0 + exp(-z) |
| const float32x4_t vd = vaddq_f32(vy, vone); |
| |
| // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. |
| // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. |
| // Thus the reciprocal of the denominator never overflows. |
| float32x4_t vr = vrecpeq_f32(vd); |
| vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); |
| vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); |
| |
| // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) |
| float32x4_t vf = vmulq_f32(vy, vr); |
| |
| // For inputs below denormal cutoff, replace output with +0.0f. |
| // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. |
| vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); |
| |
| // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) |
| const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); |
| vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); |
| |
| vst1q_f32(output, vf); output += 4; |
| } |
| } |