| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/allocator.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/params-init.h> |
| |
| |
| enum xnn_status xnn_create_softmax_nc_q8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint32_t flags, |
| xnn_operator_t* softmax_op_out) |
| { |
| xnn_operator_t softmax_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to create SoftMax operator: XNNPACK is not initialized"); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (channels == 0) { |
| xnn_log_error( |
| "failed to create SoftMax operator with %zu channels: number of channels must be non-zero", channels); |
| goto error; |
| } |
| |
| if (input_stride < channels) { |
| xnn_log_error( |
| "failed to create SoftMax operator with input element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| input_stride, channels); |
| goto error; |
| } |
| |
| if (output_stride < channels) { |
| xnn_log_error( |
| "failed to create SoftMax operator with output element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| output_stride, channels); |
| goto error; |
| } |
| |
| if (input_scale <= 0.0f || !isnormal(input_scale)) { |
| xnn_log_error( |
| "failed to create SoftMax operator with %.7g input scale: scale must be finite, normalized, and positive", |
| input_scale); |
| goto error; |
| } |
| |
| if (output_scale <= 0.0f || !isnormal(output_scale)) { |
| xnn_log_error( |
| "failed to create SoftMax operator with %.7g output scale: scale must be finite, normalized, and positive", |
| output_scale); |
| goto error; |
| } |
| |
| status = xnn_status_unsupported_parameter; |
| |
| if (output_scale != 0x1.0p-8f) { |
| xnn_log_error( |
| "failed to create SoftMax operator with %.7g output scale: only output scale of 1/256 is supported", |
| output_scale); |
| goto error; |
| } |
| |
| if (output_zero_point != 0) { |
| xnn_log_error( |
| "failed to create SoftMax operator with %" PRIu8 " output zero point: " |
| "only output zero point of 0 is supported", |
| output_zero_point); |
| goto error; |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| softmax_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); |
| if (softmax_op == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for SoftMax operator descriptor", sizeof(struct xnn_operator)); |
| goto error; |
| } |
| |
| softmax_op->lookup_table = xnn_allocate_simd_memory(256 * sizeof(uint32_t)); |
| if (softmax_op->lookup_table == NULL) { |
| xnn_log_error("failed to allocate 256 bytes for SoftMax lookup table"); |
| goto error; |
| } |
| |
| uint32_t* lookup_table = softmax_op->lookup_table; |
| const double qscale = fmin(((double) UINT32_MAX) / (double) channels, 8388607.0); |
| for (int32_t i = 0; i < 256; i++) { |
| const double scaled_exp_xi = qscale * exp((double) (i - 255) * (double) input_scale); |
| lookup_table[(uint32_t) i] = (uint32_t) lrint(scaled_exp_xi); |
| } |
| |
| softmax_op->channels = channels; |
| softmax_op->input_pixel_stride = input_stride; |
| softmax_op->output_pixel_stride = output_stride; |
| |
| softmax_op->type = xnn_operator_type_softmax_nc_q8; |
| softmax_op->ukernel.type = xnn_ukernel_type_softmax; |
| |
| softmax_op->state = xnn_run_state_invalid; |
| |
| *softmax_op_out = softmax_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(softmax_op); |
| return status; |
| } |
| |
| enum xnn_status xnn_setup_softmax_nc_q8( |
| xnn_operator_t softmax_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool) |
| { |
| if (softmax_op->type != xnn_operator_type_softmax_nc_q8) { |
| xnn_log_error("failed to setup SoftMax (NC, Q8) operator: operator type mismatch"); |
| return xnn_status_invalid_parameter; |
| } |
| softmax_op->state = xnn_run_state_invalid; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to setup SoftMax operator: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (batch_size == 0) { |
| softmax_op->state = xnn_run_state_skip; |
| return xnn_status_success; |
| } |
| |
| softmax_op->batch_size = batch_size; |
| softmax_op->input = input; |
| softmax_op->output = output; |
| |
| softmax_op->context.u8_softmax = (struct u8_softmax_context) { |
| .n = softmax_op->channels, |
| .x = input, |
| .x_stride = softmax_op->input_pixel_stride * sizeof(uint8_t), |
| .t = softmax_op->lookup_table, |
| .y = output, |
| .y_stride = softmax_op->output_pixel_stride * sizeof(uint8_t), |
| .rmax_ukernel = xnn_params.u8.rmax, |
| .lut_norm_ukernel = xnn_params.u8.lut32norm, |
| }; |
| softmax_op->compute.type = xnn_parallelization_type_1d; |
| softmax_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_u8_softmax; |
| softmax_op->compute.range[0] = batch_size; |
| softmax_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |
| |
| enum xnn_status xnn_create_softmax_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* softmax_op_out) |
| { |
| xnn_operator_t softmax_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to create SoftMax operator: XNNPACK is not initialized"); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (channels == 0) { |
| xnn_log_error( |
| "failed to create SoftMax operator with %zu channels: number of channels must be non-zero", channels); |
| goto error; |
| } |
| |
| if (input_stride < channels) { |
| xnn_log_error( |
| "failed to create SoftMax operator with input element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| input_stride, channels); |
| goto error; |
| } |
| |
| if (output_stride < channels) { |
| xnn_log_error( |
| "failed to create SoftMax operator with output element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| output_stride, channels); |
| goto error; |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| softmax_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); |
| if (softmax_op == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for SoftMax operator descriptor", sizeof(struct xnn_operator)); |
| goto error; |
| } |
| |
| softmax_op->channels = channels; |
| softmax_op->input_pixel_stride = input_stride; |
| softmax_op->output_pixel_stride = output_stride; |
| |
| softmax_op->type = xnn_operator_type_softmax_nc_f32; |
| softmax_op->ukernel.type = xnn_ukernel_type_softmax; |
| |
| softmax_op->state = xnn_run_state_invalid; |
| |
| *softmax_op_out = softmax_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(softmax_op); |
| return status; |
| } |
| |
| enum xnn_status xnn_setup_softmax_nc_f32( |
| xnn_operator_t softmax_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool) |
| { |
| if (softmax_op->type != xnn_operator_type_softmax_nc_f32) { |
| xnn_log_error("failed to setup SoftMax (NC, F32) operator: operator type mismatch"); |
| return xnn_status_invalid_parameter; |
| } |
| softmax_op->state = xnn_run_state_invalid; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to setup SoftMax operator: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (batch_size == 0) { |
| softmax_op->state = xnn_run_state_skip; |
| return xnn_status_success; |
| } |
| |
| softmax_op->batch_size = batch_size; |
| softmax_op->input = input; |
| softmax_op->output = output; |
| |
| softmax_op->context.f32_three_pass_softmax = (struct f32_three_pass_softmax_context) { |
| .n = softmax_op->channels * sizeof(float), |
| .x = input, |
| .x_stride = softmax_op->input_pixel_stride * sizeof(float), |
| .y = output, |
| .y_stride = softmax_op->output_pixel_stride * sizeof(float), |
| .rmax_ukernel = xnn_params.f32.rmax, |
| .raddstoreexpminusmax_ukernel = xnn_params.f32.raddstoreexpminusmax, |
| .vmulc_ukernel = xnn_params.f32.vmul.opc_ukernel, |
| .params = xnn_init_f32_minmax_params(-INFINITY, INFINITY), |
| }; |
| softmax_op->compute.type = xnn_parallelization_type_1d; |
| softmax_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_f32_three_pass_softmax; |
| softmax_op->compute.range[0] = batch_size; |
| softmax_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |